Late Holocene Sea-Level Change on Rota and Guam, Mariana Islands, and Its Constraint on Geophysical Predictions

1993 ◽  
Vol 40 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Hajime Kayanne ◽  
Teruaki Ishii ◽  
Eiji Matsumoto ◽  
Nobuyuki Yonekura

AbstractHolocene emergent reefs and notches are well distributed on Rota and Guam. Relative sea-level changes at these islands are reconstructed based on geomorphological observations and borings on present and emergent reefs, together with 54 radiocarbon dates. Sea level rose gradually to a maximum of 1.8 m between 6000 and 4200 yr B.P. and reached its highest level by 4200 yr B.P. on both islands. After 3200 yr B.P. abrupt uplift caused emergence of the reef. By subtracting the tectonic effect, we obtained the sea-level change in the Marianas: sea level reached its present level by 4200 yr B.P. and has remained almost stable since then. Reconstructed late Holocene sea-level change in the Mariana Islands provides constraints on geophysical models of sea-level variations.

2007 ◽  
Vol 44 (10) ◽  
pp. 1453-1465 ◽  
Author(s):  
Julia F Daly ◽  
Daniel F Belknap ◽  
Joseph T Kelley ◽  
Trevor Bell

Differential sea-level change in formerly glaciated areas is predicted owing to variability in extent and timing of glacial coverage. Newfoundland is situated close to the margin of the former Laurentide ice sheet, and the orientation of the shoreline affords the opportunity to investigate variable rates and magnitudes of sea-level change. Analysis of salt-marsh records at four sites around the island yields late Holocene sea-level trends. These trends indicate differential sea-level change in recent millennia. A north–south geographic trend reflects submergence in the south, very slow sea-level rise in the northeast, and a recent transition from falling to rising sea-level at the base of the Northern Peninsula. This variability is best explained as a continued isostatic response to deglaciation.


2015 ◽  
Vol 107 ◽  
pp. 214-230 ◽  
Author(s):  
Robert L. Barnett ◽  
W. Roland Gehrels ◽  
Dan J. Charman ◽  
Margot H. Saher ◽  
William A. Marshall

Polar Record ◽  
2008 ◽  
Vol 44 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Naja Mikkelsen ◽  
Antoon Kuijpers ◽  
Jette Arneborg

ABSTRACTNorse immigrants from Europe settled in southern Greenland in around AD 985 and managed to create a farming community during the Medieval Warm Period. The Norse vanished after approximately 500 years of existence in Greenland leaving no documentary evidence concerning why their culture foundered. The flooding of fertile grassland caused by late Holocene sea-level changes may be one of the factors that affected the Norse community. Holocene sea-level changes in Greenland are closely connected with the isostatic response of the Earth's crust to the behaviour of the Greenlandic ice sheet. An early Holocene regressive phase in south and west Greenland was reversed during the middle Holocene, and evidence is found for transgression and drowning of early-middle Holocene coast lines. This drowning started between 8 and 7ka BP in southern Greenland and continued during the Norse era to the present. An average late Holocene sea level rise in the order of 2–3 m/1000 years may be one of the factors that negatively affected the life of the Norse Greenlanders, and combined with other both socio-economic and environmental problems, such as increasing wind and sea ice expansion at the transition to the Little Ice Age, may eventually have led to the end of the Norse culture in Greenland.


Sign in / Sign up

Export Citation Format

Share Document