Field observations and modelling of Holocene sea-level changes in the southern Bay of Biscay: implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe

2012 ◽  
Vol 42 ◽  
pp. 59-73 ◽  
Author(s):  
Eduardo Leorri ◽  
Alejandro Cearreta ◽  
Glenn Milne
2018 ◽  
Vol 115 (30) ◽  
pp. 7729-7734 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Klaus Bittermann ◽  
Andrew C. Kemp ◽  
Rui M. Ponte ◽  
Christopher M. Little ◽  
...  

Identifying physical processes responsible for historical coastal sea-level changes is important for anticipating future impacts. Recent studies sought to understand the drivers of interannual to multidecadal sea-level changes on the United States Atlantic and Gulf coasts. Ocean dynamics, terrestrial water storage, vertical land motion, and melting of land ice were highlighted as important mechanisms of sea-level change along this densely populated coast on these time scales. While known to exert an important control on coastal ocean circulation, variable river discharge has been absent from recent discussions of drivers of sea-level change. We update calculations from the 1970s, comparing annual river-discharge and coastal sea-level data along the Gulf of Maine, Mid-Atlantic Bight, South Atlantic Bight, and Gulf of Mexico during 1910–2017. We show that river-discharge and sea-level changes are significantly correlated (p<0.01), such that sea level rises between 0.01 and 0.08 cm for a 1 km3 annual river-discharge increase, depending on region. We formulate a theory that describes the relation between river-discharge and halosteric sea-level changes (i.e., changes in sea level related to salinity) as a function of river discharge, Earth’s rotation, and density stratification. This theory correctly predicts the order of observed increment sea-level change per unit river-discharge anomaly, suggesting a causal relation. Our results have implications for remote sensing, climate modeling, interpreting Common Era proxy sea-level reconstructions, and projecting coastal flood risk.


1993 ◽  
Vol 40 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Hajime Kayanne ◽  
Teruaki Ishii ◽  
Eiji Matsumoto ◽  
Nobuyuki Yonekura

AbstractHolocene emergent reefs and notches are well distributed on Rota and Guam. Relative sea-level changes at these islands are reconstructed based on geomorphological observations and borings on present and emergent reefs, together with 54 radiocarbon dates. Sea level rose gradually to a maximum of 1.8 m between 6000 and 4200 yr B.P. and reached its highest level by 4200 yr B.P. on both islands. After 3200 yr B.P. abrupt uplift caused emergence of the reef. By subtracting the tectonic effect, we obtained the sea-level change in the Marianas: sea level reached its present level by 4200 yr B.P. and has remained almost stable since then. Reconstructed late Holocene sea-level change in the Mariana Islands provides constraints on geophysical models of sea-level variations.


Author(s):  
D. Zhou ◽  
W. Sun ◽  
Y. Fu ◽  
X. Zhou

<p><strong>Abstract.</strong> The ground vertical movement of the tide gauges around the Bohai sea was firstly analyzed by using the observation data from 2009 to 2017 of the nine co-located GNSS stations. It was found that the change rate of ground vertical motion of four stations was in the same order of magnitude as the sea level change. In particular, the land subsidence rate of BTGU station reaches 11.47&amp;thinsp;mm/yr, which should be paid special attention to in the analysis of sea level change. Then combined with long-term tide gauges and the satellite altimetry results, the sea level changes in the Bohai sea and adjacent waters from 1993 to 2012 were analyzed. The relative and absolute sea level rise rates of the sea area are 3.81&amp;thinsp;mm/yr and 3.61&amp;thinsp;mm/yr, respectively, both are higher than the global average rate of change. At the same time, it is found that the vertical land motion of tide gauge stations is the main factor causing regional differences in relative sea level changes.</p>


2018 ◽  
Vol 31 (13) ◽  
pp. 5263-5271 ◽  
Author(s):  
Megan Jeramaz Lickley ◽  
Carling C. Hay ◽  
Mark E. Tamisiea ◽  
Jerry X. Mitrovica

Estimates of regional and global average sea level change remain a focus of climate change research. One complication in obtaining coherent estimates is that geodetic datasets measure different aspects of the sea level field. Satellite altimetry constrains changes in the sea surface height (SSH; or absolute sea level), whereas tide gauge data provide a measure of changes in SSH relative to the crust (i.e., relative sea level). The latter is a direct measure of changes in ocean volume (and the combined impacts of ice sheet melt and steric effects), but the former is not since it does not account for crustal deformation. Nevertheless, the literature commonly conflates the two estimates by directly comparing them. We demonstrate that using satellite altimetry records to estimate global ocean volume changes can lead to biases that can exceed 15%. The level of bias will depend on the relative contributions to sea level changes from the Antarctic and Greenland Ice Sheets. The bias is also more sensitive to the detailed geometry of mass flux from the Antarctic Ice Sheet than the Greenland Ice Sheet due to rotational effects on sea level. Finally, in a regional sense, altimetry estimates should not be compared to relative sea level changes because radial crustal motions driven by polar ice mass flux are nonnegligible globally.


2020 ◽  
Vol 14 (3) ◽  
pp. 361-378
Author(s):  
V. B. Mendes ◽  
S. M. Barbosa ◽  
D. Carinhas

AbstractIn this study, we estimate vertical land motion for 35 stations primarily located along the coastline of Portugal and Spain, using GPS time series with at least eight years of observations. Based on this set of GPS stations, our results show that vertical land motion along the Iberian coastline is characterized, in general, by a low to moderate subsidence, ranging from −2.2 mm yr−1 to 0.4 mm yr−1, partially explained by the glacial isostatic adjustment geophysical signal. The estimates of vertical land motion are subsequently applied in the analysis of tide gauge records and compared with geocentric estimates of sea level change. Geocentric sea level for the Iberian Atlantic coast determined from satellite altimetry for the last three decades has a mean of 2.5 ± 0.6 mm yr−1, with a significant range, as seen for a subset of grid points located in the vicinity of tide gauge stations, which present trends varying from 1.5 mm yr−1 to 3.2 mm yr−1. Relative sea level determined from tide gauges for this region shows a high degree of spatial variability, that can be partially explained not only by the difference in length and quality of the time series, but also for possible undocumented datum shifts, turning some trends unreliable. In general, tide gauges corrected for vertical land motion produce smaller trends than satellite altimetry. Tide gauge trends for the last three decades not corrected for vertical land motion range from 0.3 mm yr−1 to 5.0 mm yr−1 with a mean of 2.6 ± 1.4 mm yr−1, similar to that obtained from satellite altimetry. When corrected for vertical land motion, we observe a reduction of the mean to ∼1.9 ± 1.4 mm yr−1. Actions to improve our knowledge of vertical land motion using space geodesy, such as establishing stations in co-location with tide gauges, will contribute to better evaluate sea level change and its impacts on coastal regions.


GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 302-320
Author(s):  
Shane Orchard ◽  
Hallie S. Fischman ◽  
Shawn Gerrity ◽  
Tommaso Alestra ◽  
Robyn Dunmore ◽  
...  

Widespread mortality of intertidal biota was observed following the 7.8 Mw Kaikōura earthquake in November 2016. To understand drivers of change and recovery in nearshore ecosystems, we quantified the variation in relative sea-level changes caused by tectonic uplift and evaluated their relationships with ecological impacts with a view to establishing the minimum threshold and overall extent of the major effects on rocky shores. Vertical displacement of contiguous 50 m shoreline sections was assessed using comparable LiDAR data to address initial and potential ongoing change across a 100 km study area. Co-seismic uplift accounted for the majority of relative sea-level change at most locations. Only small changes were detected beyond the initial earthquake event, but they included the weathering of reef platforms and accumulation of mobile gravels that continue to shape the coast. Intertidal vegetation losses were evident in equivalent intertidal zones at all uplifted sites despite considerable variation in the vertical displacement they experienced. Nine of ten uplifted sites suffered severe (>80%) loss in habitat-forming algae and included the lowest uplift values (0.6 m). These results show a functional threshold of c.1/4 of the tidal range above which major impacts were sustained. Evidently, compensatory recovery has not occurred—but more notably, previously subtidal algae that were uplifted into the low intertidal zone where they ought to persist (but did not) suggests additional post-disturbance adversities that have contributed to the overall effect. Continuing research will investigate differences in recovery trajectories across the affected area to identify factors and processes that will lead to the regeneration of ecosystems and resources.


2021 ◽  
Author(s):  
Glenn Milne ◽  
Maryam Yousefi ◽  
Konstantin Latychev

&lt;p&gt;Ongoing deformation of the Earth in response to past ice-ocean mass exchange is a significant contributor to contemporary sea-level changes and will be an important contributor to future changes. Calibrated models of this process, conventionally termed glacial isostatic adjustment (GIA), have been used to determine its influence on current and future sea-level changes. To date, the majority of these models have assumed a spherically-symmetric (1-D) representation of Earth structure. Here we apply a model that can simulate the isostatic response of a 3-D Earth in order to consider the contribution of lateral structure to model estimates of current and future sea-level change. We will present results from a global analysis based on two independent ice history reconstructions and a suite of 3-D Earth models with viscosity structure constrained using different seismic velocity models and recent estimates of lithosphere thickness variations. The accuracy of these GIA model parameter sets is assessed by comparing model output to a recently published data set of vertical land motion specifically intended to provide a robust measure of the GIA signal (Schumacher et al., Geophysical Journal International, 2018). This comparison indicates that the inclusion of lateral Earth viscosity structure results in an improved fit to the GPS-determined vertical land motion rates although significant residuals persist in some regions indicating that further efforts to improve constraints on this structure are necessary. Using the model parameter sets that best match the GPS constraints to predict the contribution of GIA to contemporary sea-level change indicates that lateral viscosity structure impacts the model estimates by order 1 mm/yr in some regions and that the model uncertainty is of a similar amplitude. Simulations of the GIA contribution to future sea-level change are also significantly affected, with differences, relative to a 1-D Earth model, reaching several decimetres on century timescales and several metres on millennial timescales.&amp;#160;&lt;/p&gt;


1992 ◽  
Vol 11 (2) ◽  
pp. 112-112 ◽  
Author(s):  
M. D. Simmons ◽  
C. L. Williams

Abstract. Following the May 1992 meeting in Dijon, which initiated an international project on the “Sequence Stratigraphy of European Basins”, it seems an appropriate time to consider the contribution micropalaeontology can make to the science of sequence stratigraphy. In this short note, we assume that readers are familiar with sequence stratigraphic terminology; if not, see Van Wagoner et al. (1988).WHAT ARE THE CHALLENGES FACING SEQUENCE STRATIGRAPHY?Demonstrating global eustatic sea-level change. We accept that the basic sequence stratigraphy model put forward by Peter Vail and his colleagues (see Van Wagoner et al., 1988 for a summary) is a powerful tool for describing many sedimentary successions, and that the associated eustatic sea-level curve (Haq et al., 1987) has some validity. Our own observations on numerous sedimentary sequences around the world suggest that local and global eustatic events exist, and that relative sea-level curves can be constructed, but it should be remembered that the timing and magnitude of many global eustatic events are still to be established. As most workers in the field will be aware, much of the evidence to support the Haq et al. curve has not been published. The Sequence Stratigraphy of European Basins Project will go some way to rectify this, but it should be borne in mind that there can be an unfortunate tendency to use the Haq et al. curve for dating in its own right - i.e. fitting relative sea-level changes seen in a succession to the curve. If this is done, then the global . . .


Sign in / Sign up

Export Citation Format

Share Document