scholarly journals Human Immunodeficiency Virus Type 1 Preferentially Encapsidates Genomic RNAs That Encode Pr55Gag: Functional Linkage between Translation and RNA Packaging

Virology ◽  
2002 ◽  
Vol 293 (2) ◽  
pp. 368-378 ◽  
Author(s):  
Dexter T.K. Poon ◽  
Elena N. Chertova ◽  
David E. Ott
2002 ◽  
Vol 76 (3) ◽  
pp. 959-967 ◽  
Author(s):  
Jun-ichi Sakuragi ◽  
Aikichi Iwamoto ◽  
Tatsuo Shioda

ABSTRACT The dimer initiation site/dimer linkage sequence (DIS/DLS) region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is thought to play important roles at various stages of the virus life cycle. Recently we showed that the DIS/DLS region affects RNA-RNA interaction in intact virus particles, by demonstrating that duplication of the region in viral RNA caused the production of virus particles containing partially monomeric RNAs. We have extended this finding and succeeded for the first time in creating mutant particles which contain only monomeric RNAs without modifying any viral proteins. In terms of RNA encapsidation ability, virion density, and protein processing, the mutant particles were comparable to wild-type particles. The level of production of viral DNA by the mutant virus construct in infected cells was also comparable to that of the constructs that produced exclusively dimeric RNA, indicating that monomeric viral RNA could be the template for strand transfer. These results indicated that the RNA dimerization of HIV-1 could be separated from viral RNA packaging and was not absolutely required for RNA packaging, virion maturation, and reverse transcription.


2003 ◽  
Vol 77 (7) ◽  
pp. 4060-4069 ◽  
Author(s):  
Jun-Ichi Sakuragi ◽  
Shigeharu Ueda ◽  
Aikichi Iwamoto ◽  
Tatsuo Shioda

ABSTRACT The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5′ region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.


2010 ◽  
Vol 84 (13) ◽  
pp. 6748-6759 ◽  
Author(s):  
Chad M. Swanson ◽  
Nathan M. Sherer ◽  
Michael H. Malim

ABSTRACT Nuclear RNA processing events, such as 5′ cap formation, 3′ polyadenylation, and pre-mRNA splicing, mark mRNA for efficient translation. Splicing enhances translation via the deposition of the exon-junction complex and other multifunctional splicing factors, including SR proteins. All retroviruses synthesize their structural and enzymatic proteins from unspliced genomic RNAs (gRNAs) and must therefore exploit unconventional strategies to ensure their effective expression. Here, we report that specific SR proteins, particularly SRp40 and SRp55, promote human immunodeficiency virus type 1 (HIV-1) Gag translation from unspliced (intron-containing) viral RNA. This activity does not correlate with nucleocytoplasmic shuttling capacity and, in the case of SRp40, is dependent on the second RNA recognition motif and the arginine-serine (RS) domain. While SR proteins enhance Gag expression independent of RNA nuclear export pathway choice, altering the nucleotide sequence of the gag-pol coding region by codon optimization abolishes this effect. We therefore propose that SR proteins couple HIV-1 gRNA biogenesis to translational utilization.


2004 ◽  
Vol 78 (19) ◽  
pp. 10814-10819 ◽  
Author(s):  
Marcel Ooms ◽  
Hendrik Huthoff ◽  
Rodney Russell ◽  
Chen Liang ◽  
Ben Berkhout

ABSTRACT The genome of retroviruses, including human immunodeficiency virus type 1 (HIV-1), consists of two identical RNA strands that are packaged as noncovalently linked dimers. The core packaging and dimerization signals are located in the downstream part of the untranslated leader of HIV-1 RNA—the Ψ and the dimerization initiation site (DIS) hairpins. The HIV-1 leader can adopt two alternative conformations that differ in the presentation of the DIS hairpin and consequently in their ability to dimerize in vitro. The branched multiple-hairpin (BMH) structure folds the poly(A) and DIS hairpins, but these domains are base paired in a long distance interaction (LDI) in the most stable LDI conformation. This LDI-BMH riboswitch regulates RNA dimerization in vitro. It was recently shown that the Ψ hairpin structure is also presented differently in the LDI and BMH structures. Several detailed in vivo studies have indicated that sequences throughout the leader RNA contribute to RNA packaging, but how these diverse mutations affect the packaging mechanism is not known. We reasoned that these effects may be due to a change in the LDI-BMH equilibrium, and we therefore reanalyzed the structural effects of a large set of leader RNA mutations that were presented in three previous studies (J. L. Clever, D. Mirandar, Jr., and T. G. Parslow, J. Virol. 76:12381-12387, 2002; C. Helga-Maria, M. L. Hammarskjold, and D. Rekosh, J. Virol. 73:4127-4135, 1999; R. S. Russell, J. Hu, V. Beriault, A. J. Mouland, M. Laughrea, L. Kleiman, M. A. Wainberg, and C. Liang, J. Virol. 77:84-96, 2003). This analysis revealed a strict correlation between the status of the LDI-BMH equilibrium and RNA packaging. Furthermore, a correlation is apparent between RNA dimerization and RNA packaging, and these processes may be coordinated by the same LDI-BMH riboswitch mechanism.


2001 ◽  
Vol 75 (15) ◽  
pp. 7193-7197 ◽  
Author(s):  
Andrea Cimarelli ◽  
Jeremy Luban

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) nucleocapsid mutation R10A/K11A abolishes viral replication when present in proviral clone HIV-1HXB-2, but it was found to have minimal effect on replication of the closely related HIV-1NL4-3. Functional mapping demonstrated that a nonconservative amino acid change at nucleocapsid residue 24 (threonine in HIV-1HXB-2, isoleucine in HIV-1NL4-3) is the major determinant of the different R10A/K11A phenotypes in these two proviruses. Threonine-isoleucine exchanges appear to modify the R10A/K11A phenotype via effects on virion RNA-packaging efficiency. The improved packaging seen with hydrophobic isoleucine is consistent with solution structures localizing this residue to a hydrophobic pocket that contacts guanosine bases in viral genomic RNA stem-loops critical for packaging.


1998 ◽  
Vol 72 (5) ◽  
pp. 3991-3998 ◽  
Author(s):  
Daniel C. St. Louis ◽  
Deanna Gotte ◽  
Eric Sanders-Buell ◽  
David W. Ritchey ◽  
Mika O. Salminen ◽  
...  

ABSTRACT Recombinant forms of human immunodeficiency virus type 1 (HIV-1) have been shown to be of major importance in the global AIDS pandemic. Viral RNA dimer formation mediated by the dimerization initiation sequence (DIS) is believed to be essential for viral genomic RNA packaging and therefore for RNA recombination. Here, we demonstrate that HIV-1 recombination and replication are not restricted by variant DIS loop sequences. Three DIS loop forms found among HIV-1 isolates, DIS (CG), DIS (TA), and DIS (TG), when introduced into deletion mutants of HIV-1 recombined efficiently, and the progeny virions replicated with comparable kinetics. A fourth DIS loop form, containing an artificial AAAAAA sequence disrupting the putative DIS loop-loop interactions [DIS (A6)], supported efficient recombination with DIS loop variants; however, DIS (A6) progeny virions exhibited a modest replication disadvantage in mixed cultures. Our studies indicate that the nonhomologous DIS sequences found in different HIV-1 subtypes are not a primary obstacle to intersubtype recombination.


2009 ◽  
Vol 73 (3) ◽  
pp. 451-480 ◽  
Author(s):  
Adewunmi Onafuwa-Nuga ◽  
Alice Telesnitsky

SUMMARY The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination—a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates—occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.


Sign in / Sign up

Export Citation Format

Share Document