scholarly journals The Remarkable Frequency of Human Immunodeficiency Virus Type 1 Genetic Recombination

2009 ◽  
Vol 73 (3) ◽  
pp. 451-480 ◽  
Author(s):  
Adewunmi Onafuwa-Nuga ◽  
Alice Telesnitsky

SUMMARY The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination—a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates—occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

2009 ◽  
Vol 83 (8) ◽  
pp. 3617-3625 ◽  
Author(s):  
Xiaoying Shen ◽  
Robert J. Parks ◽  
David C. Montefiori ◽  
Jennifer L. Kirchherr ◽  
Brandon F. Keele ◽  
...  

ABSTRACT The broadly neutralizing human monoclonal antibodies (MAbs) 2F5 and 4E10, both targeting the highly conserved human immunodeficiency virus type 1 (HIV-1) envelope membrane proximal external region (MPER), are among the MAbs with the broadest heterologous neutralizing activity and are of considerable interest for HIV-1 vaccine development. We have identified serum antibodies from an HIV-infected subject that both were broadly neutralizing and specifically targeted MPER epitopes that overlap the 2F5 epitope. These MPER-specific antibodies were made 15 to 20 months following transmission and concomitantly with the development of autoantibodies. Our findings suggest that multiple events (i.e., genetic predisposition and HIV-1 immune dysregulation) may be required for induction of broadly reactive gp41 MPER antibodies in natural infection.


2005 ◽  
Vol 79 (10) ◽  
pp. 6089-6101 ◽  
Author(s):  
Bruce K. Brown ◽  
Janice M. Darden ◽  
Sodsai Tovanabutra ◽  
Tamara Oblander ◽  
Julie Frost ◽  
...  

ABSTRACT A critical priority for human immunodeficiency virus type 1 (HIV-1) vaccine development is standardization of reagents and assays for evaluation of immune responses elicited by candidate vaccines. To provide a panel of viral reagents from multiple vaccine trial sites, 60 international HIV-1 isolates were expanded in peripheral blood mononuclear cells and characterized both genetically and biologically. Ten isolates each from clades A, B, C, and D and 10 isolates each from CRF01_AE and CRF02_AG were prepared from individuals whose HIV-1 infection was evaluated by complete genome sequencing. The main criterion for selection was that the candidate isolate was pure clade or pure circulating recombinant. After expansion in culture, the complete envelope (gp160) of each isolate was verified by sequencing. The 50% tissue culture infectious dose and p24 antigen concentration for each viral stock were determined; no correlation between these two biologic parameters was found. Syncytium formation in MT-2 cells and CCR5 or CXCR4 coreceptor usage were determined for all isolates. Isolates were also screened for neutralization by soluble CD4, a cocktail of monoclonal antibodies, and a pool of HIV-1-positive patient sera. The panel consists of 49 nonsyncytium-inducing isolates that use CCR5 as a major coreceptor and 11 syncytium-inducing isolates that use only CXCR4 or both coreceptors. Neutralization profiles suggest that the panel contains both neutralization-sensitive and -resistant isolates. This collection of HIV-1 isolates represents the six major globally prevalent strains, is exceptionally large and well characterized, and provides an important resource for standardization of immunogenicity assessment in HIV-1 vaccine trials.


2002 ◽  
Vol 76 (15) ◽  
pp. 7897-7902 ◽  
Author(s):  
Wenfeng An ◽  
Alice Telesnitsky

ABSTRACT Genetic recombination contributes to human immunodeficiency virus type 1 (HIV-1) diversity, with homologous recombination being more frequent than nonhomologous recombination. In this study, HIV-1-based vectors were used to assay the effects of various extents of sequence divergence on the frequency of the recombination-related property of repeat deletion. Sequence variation, similar in degree to that which differentiates natural HIV-1 isolates, was introduced by synonymous substitutions into a gene segment. Repeated copies of this segment were then introduced into assay vectors. With the use of a phenotypic screen, the deletion frequency of identical repeats was compared to the frequencies of repeats that differed in sequence by various extents. During HIV-1 reverse transcription, the deletion frequency observed with repeats that differed by 5% was 65% of that observed with identical repeats. The deletion frequency decreased to 26% for repeats that differed by 9%, and when repeats differed by 18%, the deletion frequency was about 5% of the identical repeat value. Deletion frequencies fell to less than 0.3% of identical repeat values when genetic distances of 27% or more were examined. These data argue that genetic variation is not as inhibitory to HIV-1 repeat deletion as it is to the corresponding cellular process and suggest that, for sequences that differ by about 25% or more, HIV-1 recombination directed by sequence homology may be no more frequent than that which is homology independent.


2010 ◽  
Vol 84 (13) ◽  
pp. 6748-6759 ◽  
Author(s):  
Chad M. Swanson ◽  
Nathan M. Sherer ◽  
Michael H. Malim

ABSTRACT Nuclear RNA processing events, such as 5′ cap formation, 3′ polyadenylation, and pre-mRNA splicing, mark mRNA for efficient translation. Splicing enhances translation via the deposition of the exon-junction complex and other multifunctional splicing factors, including SR proteins. All retroviruses synthesize their structural and enzymatic proteins from unspliced genomic RNAs (gRNAs) and must therefore exploit unconventional strategies to ensure their effective expression. Here, we report that specific SR proteins, particularly SRp40 and SRp55, promote human immunodeficiency virus type 1 (HIV-1) Gag translation from unspliced (intron-containing) viral RNA. This activity does not correlate with nucleocytoplasmic shuttling capacity and, in the case of SRp40, is dependent on the second RNA recognition motif and the arginine-serine (RS) domain. While SR proteins enhance Gag expression independent of RNA nuclear export pathway choice, altering the nucleotide sequence of the gag-pol coding region by codon optimization abolishes this effect. We therefore propose that SR proteins couple HIV-1 gRNA biogenesis to translational utilization.


2007 ◽  
Vol 82 (4) ◽  
pp. 1923-1933 ◽  
Author(s):  
Kazushi Motomura ◽  
Jianbo Chen ◽  
Wei-Shau Hu

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are genetically distinct viruses that each can cause AIDS. Approximately 1 million people are infected with both HIV-1 and HIV-2. Additionally, these two viruses use the same receptor and coreceptors and can therefore infect the same target cell populations. To explore potential genetic interactions, we first examined whether RNAs from HIV-1 and HIV-2 can be copackaged into the same virion. We used modified near-full-length viruses that each contained a green fluorescent protein gene (gfp) with a different inactivating mutation. Thus, a functional gfp could be reconstituted via recombination, which was used to detect the copackaging of HIV-1 and HIV-2 RNAs. The GFP-positive (GFP+) phenotype was detected in approximately 0.2% of the infection events, which was 35-fold lower than the intrasubtype HIV-1 rates. We isolated and characterized 54 GFP+ single-cell clones and determined that all of them contained proviruses with reconstituted gfp. We then mapped the general structures of the recombinant viruses and characterized the recombination junctions by DNA sequencing. We observed several different recombination patterns, including those that had crossovers only in gfp. The most common hybrid genomes had heterologous long terminal repeats. Although infrequent, crossovers in the viral sequences were also identified. Taken together, our study demonstrates that HIV-1 and HIV-2 can recombine, albeit at low frequencies. These observations indicate that multiple factors are likely to restrict the generation of viable hybrid HIV-1 and HIV-2 viruses. However, considering the large coinfected human population and the high viral load in patients, these rare events could provide the basis for the generation of novel human immunodeficiency viruses.


2005 ◽  
Vol 79 (16) ◽  
pp. 10108-10125 ◽  
Author(s):  
Ming Li ◽  
Feng Gao ◽  
John R. Mascola ◽  
Leonidas Stamatatos ◽  
Victoria R. Polonis ◽  
...  

ABSTRACT Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.


2005 ◽  
Vol 79 (2) ◽  
pp. 860-868 ◽  
Author(s):  
Otto O. Yang ◽  
Eric S. Daar ◽  
Beth D. Jamieson ◽  
Arumugam Balamurugan ◽  
Davey M. Smith ◽  
...  

ABSTRACT Sequential infection with different strains of human immunodeficiency virus type 1 (HIV-1) is a rarely identified phenomenon with important implications for immunopathogenesis and vaccine development. Here, we identify an individual whose good initial control of viremia was lost in association with reduced containment of a superinfecting strain. Subject 2030 presented with acute symptoms of HIV-1 infection with high viremia and an incomplete seroconversion as shown by Western blotting. A low set point of viremia (∼1,000 HIV-1 copies/ml) was initially established without drug therapy, but a new higher set point (∼40,000 HIV-1 copies/ml) manifested about 5 months after infection. Drug susceptibility testing demonstrated a multidrug-resistant virus initially but a fully sensitive virus after 5 months, and an analysis of pol genotypes showed that these were two phylogenetically distinct strains of virus (strains A and B). Replication capacity assays suggested that the outgrowth of strain B was not due to higher fitness conferred by pol, and env sequences indicated that the two strains had the same R5 coreceptor phenotype. Delineation of CD8+-T-lymphocyte responses against HIV-1 showed a striking pattern of decay of the initial cellular immune responses after superinfection, followed by some adaptation of targeting to new epitopes. An examination of targeted sequences suggested that differences in the recognized epitopes contributed to the poor immune containment of strain B. In conclusion, the rapid overgrowth of a superinfecting strain of HIV-1 of the same subtype raises major concerns for effective vaccine development.


2005 ◽  
Vol 79 (14) ◽  
pp. 9337-9340 ◽  
Author(s):  
Jianbo Chen ◽  
Terence D. Rhodes ◽  
Wei-Shau Hu

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) exhibits a high level of genetic variation generated by frequent mutation and genetic recombination during reverse transcription. We have measured HIV-1 recombination rates in T cells in one round of virus replication. It was recently proposed that HIV-1 recombines far more frequently in macrophages than in T cells. In an attempt to delineate the mechanisms that elevate recombination, we measured HIV-1 recombination rates in macrophages at three different marker distances. Surprisingly, the recombination rates were comparable in macrophages and in T cells. In addition, we observed similar recombination rates in two monocytic cell lines regardless of the differentiation status. These results indicate that HIV-1 undergoes similar numbers of recombination events when infecting macrophages and T cells.


2007 ◽  
Vol 81 (19) ◽  
pp. 10687-10698 ◽  
Author(s):  
Nihay Laham-Karam ◽  
Eran Bacharach

ABSTRACT The encapsidation signal (Ψ) and the nested dimerization initiation site are important for efficient packaging of human immunodeficiency virus type 1 (HIV-1) genomic RNA dimers. Consequently, these signals are included in all HIV-1 vectors. Here, we provide evidence demonstrating that these elements in such vectors are not absolutely required for vector transduction. In single-cycle infection assays, vectors with Ψ deleted (ΔΨ) were transduced with only a two- to fivefold reduction compared to the wild type. The transduction of ΔΨ showed typical products of reverse transcription and vector integration; however, in vitro and in vivo dimerization assays demonstrated the lack of normal dimerization of the ΔΨ vector. The reduction in transduction reflected a similar reduction in packaging. Nevertheless, a relatively high specificity of packaging was retained, as the ΔΨ vector was encapsidated at a level 4 orders of magnitude higher than that for overexpressed, nonretroviral cellular mRNA and 15 orders of magnitude higher than that for a murine leukemia virus (MLV)-based vector, all containing the same reporter gene, suggesting a Ψ-independent mechanism of packaging. The fact that HIV-1 and MLV vectors were encapsidated with a much higher level of efficiency than the cellular RNA suggests that the genomic RNAs of different retroviruses share common features and/or pathways that target them to encapsidation. Overall, these results formally demonstrate that packaging and dimerization signals are not required for the early stages of infection and can be deleted without risking a total loss of vector transduction. Deletion of these signals should enhance the safety of these vectors.


Sign in / Sign up

Export Citation Format

Share Document