Effect of an Imperfect Interface on Elastic P-Wave Scattering by a Spherical Inclusion

Author(s):  
Anil C. Wijeyewickrema ◽  
Lai Mei-Chiang
2011 ◽  
Vol 63 (3) ◽  
pp. 375-375
Author(s):  
H. Ouerdane ◽  
M. J. Jamieson
Keyword(s):  
P Wave ◽  
S Wave ◽  

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Ping-Lin Jiang ◽  
Hua Jiang ◽  
Yu-Sheng Jiang ◽  
Dai Wang ◽  
Nan Li ◽  
...  

The seismic wave scattering by a 3D tunnel mountain is investigated by the indirect boundary element method (IBEM). Without loss of generality, the 3D physical model of hemispherical tunnel mountain in an elastic half-space is established, and the influence of the incidence frequency and angle of P or SV wave on the mountain surface displacements is mainly examined. It is shown that there exists quite a difference between the spatial distribution of displacement amplitude under the incident P wave and the one under SV wave and that the incidence frequency and angle of wave, especially the existence of tunnel excavated in the mountain, have a great effect on the surface displacements of mountain; the presence of the tunnel in the mountain may cause the greater amplification of surface displacement, which is unfavorable to the mountain projects. In addition, it should be noted that the tunnel may suffer the more severe damage under the incident SV wave.


2003 ◽  
Vol 19 (1) ◽  
pp. 1-8
Author(s):  
T. Chen ◽  
C. H. Hsieh ◽  
P. C. Chuang

ABSTRACTA series solution is presented for a spherical inclusion embedded in an infinite matrix under a remotely applied uniform intensity. Particularly, the interface between the inclusion and the matrix is considered to be inhomegeneously bonded. We examine the axisymmetric case in which the interface parameter varies with the cone angle θ. Two kinds of imperfect interfaces are considered: an imperfect interface which models a thin interphase of low conductivity and an imperfect interface which models a thin interphase of high conductivity. We show that, by expanding the solutions of terms of Legendre polynomials, the field solution is governed by a linear set of algebraic equations with an infinite number of unknowns. The key step of the formulation relies on algebraic identities between coefficients of products of Legendre series. Some numerical illustrations are presented to show the correctness of the presented procedures. Further, solutions of the boundary-value problem are employed to estimate the effective conductivity tensor of a composite consisting of dispersions of spherical inclusions with equal size. The effective conductivity solely depends on one particular constant among an infinite number of unknowns.


1990 ◽  
Vol 515 (4) ◽  
pp. 665-685 ◽  
Author(s):  
G. Holzwarth ◽  
G. Pari ◽  
B.K. Jennings

2021 ◽  
Vol 108 ◽  
pp. 103720
Author(s):  
Xuepeng Zhang ◽  
Yujing Jiang ◽  
Gang Wang ◽  
Yue Cai ◽  
Tomomi Iura

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Longhai Zeng ◽  
Chuanlin Hu ◽  
Wensheng Yan

The single scattering of P- and SV-waves by a cylindrical fiber with a partially imperfect bonding to the surrounding matrix is investigated, which benefits the characterization of the behavior of elastic waves in composite materials. The imperfect interface is modelled by the spring model. To solve the corresponding single scattering problem, a collocation point (CP) method is introduced. Based on this method, influence of various aspects of the imperfect interface on the scattering of P- and SV-waves is studied. Results indicate that (i) the total scattering cross section (SCS) is almost symmetric about the axis α=π/2 with respect to the location (α) of the imperfect interface, (ii) imperfect interfaces located at α=0 and α=π highly reduce the total SCS under a P-wave incidence and imperfect interfaces located at α=π/2 reduce the total SCS most significantly under SV-incidence, and (iii) under a P-wave incidence the SCS has a high sensitivity to the bonding level of imperfect interfaces when α is small, while it becomes more sensitive to the bonding level when α is larger under SV-wave incidence.


Sign in / Sign up

Export Citation Format

Share Document