Spaces of Holomorphic Functions in the Unit Ball

1982 ◽  
Vol 34 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Eric Sawyer

The main purpose of this note is to prove a special case of the following conjecture.Conjecture. If F is holomorphic on the unit ball Bn in Cn and has positive real part, then F is in Hp(Bn) for 0 < p < ½(n + 1).Here Hp(Bn) (0 < p < ∞) denote the usual Hardy spaces of holomorphic functions on Bn. See below for definitions. We remark that the conjecture is known for 0 < p < 1 and that some evidence for it already exists in the literature; for example [1, Theorems 3.11 and 3.15] where it is shown that a particular extreme element of the convex cone of functionsis in Hp(B2) for 0 < p < 3/2.


2016 ◽  
Vol 59 (01) ◽  
pp. 13-29
Author(s):  
Rauno Aulaskari ◽  
Huaihui Chen

AbstractThe Qpspaces of holomorphic functions on the disk, hyperbolic Riemann surfaces or complex unit ball have been studied deeply. Meanwhile, there are a lot of papers devoted to theclasses of meromorphic functions on the disk or hyperbolic Riemann surfaces. In this paper, we prove the nesting property (inclusion relations) ofclasses on hyperbolic Riemann surfaces. The same property for Qp spaces was also established systematically and precisely in earlier work by the authors of this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Augusto Guadalupe Miss Paredes ◽  
Lino Feliciano Reséndis Ocampo ◽  
Luis Manuel Tovar Sánchez

We introduce the and vector spaces of holomorphic functions defined in the unit ball of , generalizing previous work like Ouyang et al. (1998), Stroethoff (1989), and Choa et al. (1992). Likewise, we characterize those spaces in terms of harmonic majorants as a generalization of Arellano et al. (2000).


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Stevo Stević

The boundedness and compactness of weighted iterated radial composition operators from the mixed-norm space to the weighted-type space and the little weighted-type space on the unit ball are characterized here. We also calculate the Hilbert-Schmidt norm of the operator on the weighted Bergman-Hilbert space as well as on the Hardy space.


2003 ◽  
Vol 46 (4) ◽  
pp. 559-574 ◽  
Author(s):  
Nicolas Marco ◽  
Xavier Massaneda

AbstractIn this paper we study interpolating sequences for two related spaces of holomorphic functions in the unit ball of Cn, n > 1. We first give density conditions for a sequence to be interpolating for the class A−∞ of holomorphic functions with polynomial growth. The sufficient condition is formally identical to the characterizing condition in dimension 1, whereas the necessary one goes along the lines of the results given by Li and Taylor for some spaces of entire functions. In the second part of the paper we show that a density condition, which for n = 1 coincides with the characterizing condition given by Seip, is sufficient for interpolation in the (weighted) Bergman space.


Filomat ◽  
2009 ◽  
Vol 23 (3) ◽  
pp. 135-153 ◽  
Author(s):  
Miroslav Pavlovic

This is a collection of some known and some new facts on the holomorphic and the harmonic version of the Hardy-Stein identity as well as on their extensions to the real and the complex ball. For example, we prove that if f is holomorphic on the unit disk D, then ??f ??Hp = ?f(0)?p + ?D?f'(z)? p-2 ?f'(z)?2(1-?z?) dA(z), (?) where Hp is the p-Hardy space, which improves a result of Yamashita [Proc. Amer. Math. Soc. 75 (1979), no. 1, 69-72]. An extension of (?) to the unit ball of Cn improves results of Beatrous an Burbea [Kodai Math. J. 8 (1985), 36-51], and of Stoll [J. London Math. Soc. (2) 48 (1993), no. 1, 126-136]. We also prove the analogous result for the harmonic Hardy spaces. The proofs of known results are shorter and more elementary then the existing ones, see Zhu [Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005, Ch. IV]. We correct some constants in that book and in a paper of Jevtic and Pavlovic [Publ. Inst. Math. (Beograd) (N.S.) 64(78) (1998), 36-52].


Sign in / Sign up

Export Citation Format

Share Document