The Sitega Tool for Recognition and Context Analysis of Transcription Factor Binding Sites: Significant Dinucleotide Features Besides the Canonical Consensus Exemplified By SF-1 Binding Site

Author(s):  
V. Levitsky ◽  
E. Ignatieva ◽  
G. Vasiliev ◽  
N. Limova ◽  
T. Busygina ◽  
...  
2015 ◽  
Vol 197 (15) ◽  
pp. 2454-2457 ◽  
Author(s):  
Ivan Erill

Experimentally verified transcription factor-binding sites represent an information-rich and highly applicable data type that aptly summarizes the results of time-consuming experiments and inference processes. Currently, there is no centralized repository for this type of data, which is routinely embedded in articles and extremely hard to mine. CollecTF provides the first standardized resource for submission and deposition of these data into the NCBI RefSeq database, maximizing its accessibility and prompting the community to adopt direct submission policies.


2020 ◽  
Vol 21 (15) ◽  
pp. 5300
Author(s):  
Qingling Jiang ◽  
Bei Lu ◽  
Guizhong Wang ◽  
Haihui Ye

In crustaceans, the regulation of sex differentiation is mediated by insulin-like androgenic hormone (IAG) and crustacean female sex hormone (CFSH). CFSH is reported to inhibit IAG gene (Sp-IAG) expression in the mud crab Scylla paramamosain, but the regulatory mechanism is not well understood. A 2674 bp 5′ flanking Sp-IAG contains many potential transcription factor binding sites. In this study, analysis of serially deleted 5′ flanking Sp-IAG and site-directed mutation (SDM) of transcription factor binding sites of the same gene showed that the promoter activity of reporter vectors with Sox-5-binding site, signal transducers and activators of transcription (STAT)-binding site and activator protein 1 (AP-1)-binding site were significantly higher than that of vectors without these regions, suggesting that they were involved in transcriptional regulation of Sp-IAG expression. The expression analysis of these transcription factor showed that there was no difference in the level of mRNA in Sox-5 and AP-1 in androgenic gland treated with recombinant CFSH, but expression of Sp-STAT was significantly reduced, suggesting that CFSH regulates the expression of Sp-STAT, inhibiting its function to regulate Sp-IAG. Further experiment revealed that RNAi mediated Sp-STAT gene knockdown reduced the expression of Sp-IAG. These results suggested that Sp-CFSH regulates Sp-IAG by inhibiting STAT. This is a pioneering finding on the transcriptional mechanism of IAG gene in crustaceans.


2020 ◽  
Vol 117 (26) ◽  
pp. 15096-15103 ◽  
Author(s):  
Samuel H. Keller ◽  
Siddhartha G. Jena ◽  
Yuji Yamazaki ◽  
Bomyi Lim

The regulatory specificity of a gene is determined by the structure of its enhancers, which contain multiple transcription factor binding sites. A unique combination of transcription factor binding sites in an enhancer determines the boundary of target gene expression, and their disruption often leads to developmental defects. Despite extensive characterization of binding motifs in an enhancer, it is still unclear how each binding site contributes to overall transcriptional activity. Using live imaging, quantitative analysis, and mathematical modeling, we measured the contribution of individual binding sites in transcriptional regulation. We show that binding site arrangement within the Rho-GTPase componentt48enhancer mediates the expression boundary by mainly regulating the timing of transcriptional activation along the dorsoventral axis ofDrosophilaembryos. By tuning the binding affinity of the Dorsal (Dl) and Zelda (Zld) sites, we show that single site modulations are sufficient to induce significant changes in transcription. Yet, no one site seems to have a dominant role; rather, multiple sites synergistically drive increases in transcriptional activity. Interestingly, Dl and Zld demonstrate distinct roles in transcriptional regulation. Dl site modulations change spatial boundaries oft48, mostly by affecting the timing of activation and bursting frequency rather than transcriptional amplitude or bursting duration. However, modulating the binding site for the pioneer factor Zld affects both the timing of activation and amplitude, suggesting that Zld may potentiate higher Dl recruitment to target DNAs. We propose that such fine-tuning of dynamic gene control via enhancer structure may play an important role in ensuring normal development.


Sign in / Sign up

Export Citation Format

Share Document