The Kato decomposition property

2017 ◽  
Vol 60 (1) ◽  
pp. 35-50
Author(s):  
MUNEO CHŌ ◽  
EUNGIL KO ◽  
JI EUN LEE

AbstractIn this paper, we study spectral properties and local spectral properties of ∞-complex symmetric operators T. In particular, we prove that if T is an ∞-complex symmetric operator, then T has the decomposition property (δ) if and only if T is decomposable. Moreover, we show that if T and S are ∞-complex symmetric operators, then so is T ⊗ S.


2010 ◽  
Vol 106 (1) ◽  
pp. 88 ◽  
Author(s):  
Luis A. Dupont ◽  
Rafael H. Villarreal

The normality of a monomial ideal is expressed in terms of lattice points of blocking polyhedra and the integer decomposition property. For edge ideals of clutters this property characterizes normality. Let $G$ be the comparability graph of a finite poset. If $\mathrm{cl}(G)$ is the clutter of maximal cliques of $G$, we prove that $\mathrm{cl}(G)$ satisfies the max-flow min-cut property and that its edge ideal is normally torsion free. Then we prove that edge ideals of complete admissible uniform clutters are normally torsion free.


2006 ◽  
Vol 80 (3) ◽  
pp. 359-366 ◽  
Author(s):  
Dinh Van Huynh ◽  
S. Tariq Rizvi

AbstractA module M is said to satisfy the condition (℘*) if M is a direct sum of a projective module and a quasi-continuous module. In an earlier paper, we described the structure of rings over which every (countably generated) right module satisfies (℘*), and it was shown that such a ring is right artinian. In this note some additional properties of these rings are obtained. Among other results, we show that a ring over which all right modules satisfy (℘*) is also left artinian, but the property (℘*) is not left-right symmetric.


1996 ◽  
Vol 39 (4) ◽  
pp. 429-437 ◽  
Author(s):  
K. R. Goodearl

AbstractExamples are constructed of stably finite, imitai, separable C* -algebras A of real rank zero such that the partially ordered abelian groups K0(A) do not satisfy the Riesz decomposition property. This contrasts with the result of Zhang that projections in C* -algebras of real rank zero satisfy Riesz decomposition. The construction method also produces a stably finite, unital, separable C* -algebra of real rank zero which has the same K-theory as an approximately finite dimensional C*-algebra, but is not itself approximately finite dimensional.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 863 ◽  
Author(s):  
Luisa Di Piazza ◽  
Kazimierz Musiał

We give a short overview on the decomposition property for integrable multifunctions, i.e., when an “integrable in a certain sense” multifunction can be represented as a sum of one of its integrable selections and a multifunction integrable in a narrower sense. The decomposition theorems are important tools of the theory of multivalued integration since they allow us to see an integrable multifunction as a translation of a multifunction with better properties. Consequently, they provide better characterization of integrable multifunctions under consideration. There is a large literature on it starting from the seminal paper of the authors in 2006, where the property was proved for Henstock integrable multifunctions taking compact convex values in a separable Banach space X. In this paper, we summarize the earlier results, we prove further results and present tables which show the state of art in this topic.


1965 ◽  
Vol 184 (2) ◽  
pp. 175-180
Author(s):  
Edward B. Jay

Sign in / Sign up

Export Citation Format

Share Document