scholarly journals Decompositions of Weakly Compact Valued Integrable Multifunctions

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 863 ◽  
Author(s):  
Luisa Di Piazza ◽  
Kazimierz Musiał

We give a short overview on the decomposition property for integrable multifunctions, i.e., when an “integrable in a certain sense” multifunction can be represented as a sum of one of its integrable selections and a multifunction integrable in a narrower sense. The decomposition theorems are important tools of the theory of multivalued integration since they allow us to see an integrable multifunction as a translation of a multifunction with better properties. Consequently, they provide better characterization of integrable multifunctions under consideration. There is a large literature on it starting from the seminal paper of the authors in 2006, where the property was proved for Henstock integrable multifunctions taking compact convex values in a separable Banach space X. In this paper, we summarize the earlier results, we prove further results and present tables which show the state of art in this topic.

2013 ◽  
Vol 56 (2) ◽  
pp. 272-282 ◽  
Author(s):  
Lixin Cheng ◽  
Zhenghua Luo ◽  
Yu Zhou

AbstractIn this note, we first give a characterization of super weakly compact convex sets of a Banach space X: a closed bounded convex set K ⊂ X is super weakly compact if and only if there exists a w* lower semicontinuous seminorm p with p ≥ σK ≌ supxєK 〈.,x〉 such that p2 is uniformly Fréchet differentiable on each bounded set of X*. Then we present a representation theoremfor the dual of the semigroup swcc(X) consisting of all the nonempty super weakly compact convex sets of the space X.


1976 ◽  
Vol 19 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Joseph Bogin

In [7], Goebel, Kirk and Shimi proved the following:Theorem. Let X be a uniformly convex Banach space, K a nonempty bounded closed and convex subset of X, and F:K→K a continuous mapping satisfying for each x, y∈K:(1)where ai≥0 and Then F has a fixed point in K.In this paper we shall prove that this theorem remains true in any Banach space X, provided that K is a nonempty, weakly compact convex subset of X and has normal structure (see Definition 1 below).


Author(s):  
Michael Edelstein ◽  
Daryl Tingley

AbstractSeveral procedures for locating fixed points of nonexpansive selfmaps of a weakly compact convex subset of a Banach space are presented. Some of the results involve the notion of an asymptotic center or a Chebyshev center.


2011 ◽  
Vol 83 (3) ◽  
pp. 450-455
Author(s):  
J. R. GILES

AbstractA Banach space is an Asplund space if every continuous gauge has a point where the subdifferential mapping is Hausdorff weak upper semi-continuous with weakly compact image. This contributes towards the solution of a problem posed by Godefroy, Montesinos and Zizler.


2002 ◽  
Vol 85 (3) ◽  
pp. 742-768 ◽  
Author(s):  
SPIROS A. ARGYROS ◽  
JESÚS F. CASTILLO ◽  
ANTONIO S. GRANERO ◽  
MAR JIMÉNEZ ◽  
JOSÉ P. MORENO

We investigate in this paper the complementation of copies of $c_0(I)$ in some classes of Banach spaces (in the class of weakly compactly generated (WCG) Banach spaces, in the larger class $\mathcal{V}$ of Banach spaces which are subspaces of some $C(K)$ space with $K$ a Valdivia compact, and in the Banach spaces $C([1, \alpha ])$, where $\alpha$ is an ordinal) and the embedding of $c_0(I)$ in the elements of the class $\mathcal{C}$ of complemented subspaces of $C(K)$ spaces. Two of our results are as follows:(i) in a Banach space $X \in \mathcal{V}$ every copy of $c_0(I)$ with $\# I < \aleph _{\omega}$ is complemented;(ii) if $\alpha _0 = \aleph _0$, $\alpha _{n+1} = 2^{\alpha _n}$, $n \geq 0$, and $\alpha = \sup \{\alpha _n : n \geq 0\}$ there exists a WCG Banach space with an uncomplemented copy of $c_0(\alpha )$.So, under the generalized continuum hypothesis (GCH), $\aleph _{\omega}$ is the greatest cardinal $\tau$ such that every copy of $c_0(I)$ with $\# I < \tau$ is complemented in the class $\mathcal{V}$. If $T : c_0(I) \to C([1,\alpha ])$ is an isomorphism into its image, we prove that:(i) $c_0(I)$ is complemented, whenever $\| T \| ,\| T^{-1} \| < (3/2)^{\frac 12}$;(ii) there is a finite partition $\{I_1, \dots , I_k\}$ of $I$ such that each copy $T(c_0(I_k))$ is complemented.Concerning the class $\mathcal{C}$, we prove that an already known property of $C(K)$ spaces is still true for this class, namely, if $X \in \mathcal{C}$, the following are equivalent:(i) there is a weakly compact subset $W \subset X$ with ${\rm Dens}(W) = \tau$;(ii) $c_0(\tau )$ is isomorphically embedded into $X$.This yields a new characterization of a class of injective Banach spaces.2000 Mathematical Subject Classification: 46B20, 46B26.


2010 ◽  
Vol 2010 ◽  
pp. 1-5
Author(s):  
A. Kaewkhao ◽  
K. Sokhuma

We introduce a class of nonlinear continuous mappings defined on a bounded closed convex subset of a Banach spaceX. We characterize the Banach spaces in which every asymptotic center of each bounded sequence in any weakly compact convex subset is compact as those spaces having the weak fixed point property for this type of mappings.


1982 ◽  
Vol 25 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Kok-Keong Tan

AbstractA closed convex subset X of a Banach space E is said to have (i) asymptotic normal structure if for each bounded closed convex subset C of X containing more than one point and for each sequence in C satisfying ‖xn − xn + 1‖ → 0 as n → ∞, there is a point x ∈ C such that ; (ii) close-to-normal structure if for each bounded closed convex subset C of X containing more than one point, there is a point x ∈ C such that ‖x − y‖ < diam‖ ‖(C) for all y ∈ C While asymptotic normal structure and close-to-normal structure are both implied by normal structure, they are not related. The example that a reflexive Banach space which has asymptotic normal structure but not close-to normal structure provides us a non-empty weakly compact convex set which does not have close-to-normal structure. This answers an open question posed by Wong in [9] and hence also provides us a Kannan map defined on a weakly compact convex set which does not have a fixed point.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M'Hamed El-Louh ◽  
Mohammed El Allali ◽  
Fatima Ezzaki

PurposeIn this work, the authors are interested in the notion of vector valued and set valued Pettis integrable pramarts. The notion of pramart is more general than that of martingale. Every martingale is a pramart, but the converse is not generally true.Design/methodology/approachIn this work, the authors present several properties and convergence theorems for Pettis integrable pramarts with convex weakly compact values in a separable Banach space.FindingsThe existence of the conditional expectation of Pettis integrable mutifunctions indexed by bounded stopping times is provided. The authors prove the almost sure convergence in Mosco and linear topologies of Pettis integrable pramarts with values in (cwk(E)) the family of convex weakly compact subsets of a separable Banach space.Originality/valueThe purpose of the present paper is to present new properties and various new convergence results for convex weakly compact valued Pettis integrable pramarts in Banach space.


Author(s):  
Joseph Frank Gordon

In this paper, we derive a fixed-point theorem for self-mappings. That is, it is shown that every isometric self-mapping on a weakly compact convex subset of a strictly convex Banach space has a fixed point.


Author(s):  
P. G. Dodds

AbstractIt is shown that a weakly compact convex set in a locally convex space is a zonoform if and only if it is the order continuous image of an order interval in a Dedekind complete Riesz space. While this result implies the Kluv´nek characterization of the range of a vector measure, the techniques of the present paper are purely order theoretic.


Sign in / Sign up

Export Citation Format

Share Document