1991 ◽  
Vol 43 (5) ◽  
pp. 3920-3927 ◽  
Author(s):  
S. Lehwald ◽  
J. G. Chen ◽  
G. Kisters ◽  
E. Preuss ◽  
H. Ibach


1988 ◽  
Vol 7 (3) ◽  
pp. 263-268 ◽  
Author(s):  
C. Z Wang ◽  
A Fasolino ◽  
E Tosatti


1987 ◽  
Vol 36 (6) ◽  
pp. 2996-3001 ◽  
Author(s):  
J. E. Black ◽  
A. Franchini ◽  
V. Bortolani ◽  
G. Santoro ◽  
R. F. Wallis


Author(s):  
M. Rocca ◽  
H. Ibach ◽  
S. Lehwald ◽  
T. S. Rahman


2012 ◽  
Vol 108 (18) ◽  
Author(s):  
Xuetao Zhu ◽  
L. Santos ◽  
C. Howard ◽  
R. Sankar ◽  
F. C. Chou ◽  
...  


1986 ◽  
Vol 178 (1-3) ◽  
pp. A661-A662
Author(s):  
Klaus Kern ◽  
Rudolf David ◽  
RobertL. Palmer ◽  
George Comsa ◽  
TalatS. Rahman


1986 ◽  
Vol 34 (8) ◽  
pp. 5719-5725 ◽  
Author(s):  
H. Ishida ◽  
K. Terakura


1984 ◽  
Vol 52 (21) ◽  
pp. 1907-1910 ◽  
Author(s):  
G. Benedek ◽  
M. Miura ◽  
W. Kress ◽  
H. Bilz


1998 ◽  
Vol 05 (01) ◽  
pp. 427-431 ◽  
Author(s):  
Susanne Siebentritt ◽  
Roland Pues ◽  
Karl-Heinz Rieder ◽  
Alexander M. Shikin

Using high resolution electron energy loss spectroscopy (HREELS) the surface phonon dispersion of graphite has been determined in the Γ K direction over the whole energy range and the whole Brillouin zone. By depositing lanthanum and annealing we prepared a GIC-like phase which grows on top of an intermediate carbide. The phonon dispersion of this phase shows the same modes as graphite, but the optical ones are softened and the acoustical ones are stiffened. This is described within a Born-von Karman model. The evolution of the phonon dispersion gives a first hint that the GIC-like phase may develop in two stages: first a monolayer graphite on top of the carbide and then the very thin GIC layer.



1991 ◽  
Vol 241 (3) ◽  
pp. 346-352 ◽  
Author(s):  
P Santini ◽  
L Miglio ◽  
G Benedek ◽  
P Ruggerone


Sign in / Sign up

Export Citation Format

Share Document