scholarly journals Using a Bayesian-Network Model for the Analysis of Clinical Time-Series Data

Author(s):  
Stefan Visscher ◽  
Peter Lucas ◽  
Karin Schurink ◽  
Marc Bonten
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Shuqin Wang ◽  
Gang Hua ◽  
Guosheng Hao ◽  
Chunli Xie

Multivariate time series (MTS) data is an important class of temporal data objects and it can be easily obtained. However, the MTS classification is a very difficult process because of the complexity of the data type. In this paper, we proposed a Cycle Deep Belief Network model to classify MTS and compared its performance with DBN and KNN. This model utilizes the presentation learning ability of DBN and the correlation between the time series data. The experimental results showed that this model outperforms other four algorithms: DBN, KNN_ED, KNN_DTW, and RNN.


Author(s):  
Shuhua Yang ◽  
Xiaomo Jiang ◽  
Shengli Xu ◽  
Xiaofang Wang

Turbomachinery often suffers various defects such as impeller cracking, resulting in forced outage, increased maintenance costs, and reduced productivity. Condition monitoring and damage prognostics has been widely used as an increasingly important and powerful tool to improve the system availability, reliability, performance, and maintainability, but still very challenging due to multiple sources of data uncertainties and the complexity of analytics modeling. This paper presents an intelligent probabilistic methodology for anomaly prediction of high-fidelity turbomachine, considering multiple data imperfections and multivariate correlation. The proposed method adeptly integrates several advanced state-of-the-art signal processing and artificial intelligence techniques: wavelet multi-resolution decomposition, Bayesian hypothesis testing, probabilistic principal component analysis, and fuzzy stochastic neural network modeling. The advanced signal processing is employed to reduce dimensionality and to address multivariate correlation and data uncertainty for damage prediction. Instead of conventionally using raw time series data, principal components are utilized in the establishment of stochastic neural network model and anomaly prediction. Bayesian interval hypothesis testing metric is then presented to quantitatively compare the predicted and measured data for model validation and anomaly evaluation, thus providing a confidence indicator to judge the model quality and evaluate the equipment status. Bayesian method is developed in this study for denoising the raw data with multiresolution wavelet decomposition, quantifying the model accuracy, and assessing the equipment status. The dynamic stochastic neural network model is established via the nonlinear autoregressive moving average with exogenous inputs approach. It seamlessly integrates the fuzzy clustering and independent Bernoulli random function into radial basis function neural network. A natural gradient method based on Kullback-Leibler distance criterion is employed to maximize the log-likelihood loss function. The effectiveness of the proposed methodology and procedure is demonstrated with the 11-variable time series data and the forced outage event of a real-world centrifugal compressor.


2020 ◽  
Vol 13 (2) ◽  
pp. 116-124
Author(s):  
Hermansah Hermansah ◽  
Dedi Rosadi ◽  
Abdurakhman Abdurakhman ◽  
Herni Utami

NARNN is a type of ANN model consisting of a limited number of parameters and widely used for various applications. This study aims to determine the appropriate NARNN model, for the selection of input variables of nonlinear autoregressive neural network model for time series data forecasting, using the stepwise method. Furthermore, the study determines the optimal number of neurons in the hidden layer, using a trial and error method for some architecture. The NARNN model is combined in three parts, namely the learning method, the activation function, and the ensemble operator, to get the best single model. Its application in this study was conducted on real data, such as the interest rate of Bank Indonesia. The comparison results of MASE, RMSE, and MAPE values with ARIMA and Exponential Smoothing models shows that the NARNN is the best model used to effectively improve forecasting accuracy.


2018 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Luqi Xing ◽  
Xuejian Li ◽  
Huaqiang Du ◽  
Guomo Zhou ◽  
Fangjie Mao ◽  
...  

The highly accurate multiresolution leaf area index (LAI) is an important parameter for carbon cycle simulation for bamboo forests at different scales. However, current LAI products have discontinuous resolution with 1 km mostly, that makes it difficult to accurately quantify the spatiotemporal evolution of carbon cycle at different resolutions. Thus, this study used MODIS LAI product (MOD15A2) and MODIS reflectance data (MOD09Q1) of Moso bamboo forest (MBF) from 2015, and it adopted a hierarchical Bayesian network (HBN) algorithm coupled with a dynamic LAI model and the PROSAIL model to obtain high-precision LAI data at multiresolution (i.e., 1000, 500, and 250 m). The results showed the LAIs assimilated using the HBN at the three resolutions corresponded with the actual growth trend of the MBF and correlated significantly with the observed LAI with a determination coefficient (R2) value of > 0.80. The highest-precision assimilated LAI was obtained at 1000-m resolution with R2 values of 0.91. The LAI assimilated using the HBN algorithm achieved better accuracy than the MODIS LAI with increases in the R2 value of 2.7 times and decreases in the root mean square error of 87.8%. Therefore, the HBN algorithm applied in this study can effectively obtain highly accurate multiresolution LAI time series data for bamboo forest.


Sign in / Sign up

Export Citation Format

Share Document