A Novel Unsupervised Segmentation Method for MR Brain Images Based on Fuzzy Methods

Author(s):  
Xian Fan ◽  
Jie Yang ◽  
Yuanjie Zheng ◽  
Lishui Cheng ◽  
Yun Zhu
2013 ◽  
Author(s):  
Amir Alansary ◽  
Ahmed Soliman ◽  
Fahmi Khalifa ◽  
Ahmed Elnakib ◽  
Mahmoud Mostapha ◽  
...  

We propose a new MAP-based technique for the unsupervised segmentation of different brain structures (white matter, gray matter, etc.) from T1-weighted MR brain images. In this paper, we follow a procedure like most conventional approaches, in which T1-weighted MR brain images and desired maps of regions (white matter, gray matter, etc.) are modeled by a joint Markov-Gibbs Random Field model (MGRF) of independent image signals and interdependent region labels. However, we specifically focus on the most accurate model identification that can be achieved. The proposed joint MGRF model accounts for the following three descriptors: i) a 1st-order visual appearance descriptor(empirical distribution of signal intensity), ii) a 3D probabilistic shape prior, and iii) a 3D spatially invariant 2nd-order homogeneity descriptor. To better specify the 1st-order visual appearance descriptor, each empirical distribution of signals is precisely approximated by a Linear Combination of Discrete Gaussians (LCDG) having both positive and negative components. The 3D probabilistic shape prior is learned using a subset of 3D co-aligned training T1-weighted MR brain images. The 2nd-order homogeneity descriptor is modeled by a 2nd-order translation and rotation invariant MGRF of 3D T1-weighted MR brain region labels with analytically estimated potentials. The initial segmentation, based on a 1st-order visual appearance and 3D probabilistic shape, is then iteratively refined using a 3D MGRF model with analytically estimated potentials. Experiments on twelve 3D T1-weighted MR brain images confirm the high accuracy of the proposed approach.


2012 ◽  
Vol 490-495 ◽  
pp. 157-161
Author(s):  
Guo Fu Lin

In this paper, a three-dimensional probabilistic approach for MR brain image segmentation is proposed. Based on the noise-free representative reference vectors provided by SOM, the results of the 3D-PNN method are superior to other traditional algorithms. In addition to the 3D-PNN architecture, a fast three-step training method is proposed. The proposed approach also incorporates structure tensor to find appropriate feature sets for the 3D-PNN with respect to resulting classification accuracy. Computational results with simulated MR brain images have shown the promising performance of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document