scholarly journals Planetary Nebulae as Tracers of the Intergalactic Stellar Background: A Population Synthesis Theoretical Approach

Author(s):  
Alberto Buzzoni ◽  
Magda Arnaboldi
1997 ◽  
Vol 180 ◽  
pp. 475-476
Author(s):  
M. G. Richer ◽  
G. Stasińska ◽  
M. L. McCall

We have obtained spectra of 28 planetary nebulae in the bulge of M31 using the MOS spectrograph at the Canada-France-Hawaii Telescope. Typically, we observed the [O II] λ3727 to He I λ5876 wavelength region at a resolution of approximately 1.6 å/pixel. For 19 of the 21 planetary nebulae whose [OIII]λ5007 luminosities are within 1 mag of the peak of the planetary nebula luminosity function, our oxygen abundances are based upon a measured [OIII]λ4363 intensity, so they are based upon a measured electron temperature. The oxygen abundances cover a wide range, 7.85 dex < 12 + log(O/H) < 9.09 dex, but the mean abundance is surprisingly low, 12 + log(O/H)–8.64 ± 0.32 dex, i.e., roughly half the solar value (Anders & Grevesse 1989). The distribution of oxygen abundances is shown in Figure 1, where the ordinate indicates the number of planetary nebulae with abundances within ±0.1 dex of any point on the x-axis. The dashed line indicates the mean abundance, and the dotted lines indicate the ±1 σ points. The shape of this abundance distribution seems to indicate that the bulge of M31 does not contain a large population of bright, oxygen-rich planetary nebulae. This is a surprising result, for various population synthesis studies (e.g., Bica et al. 1990) have found a mean stellar metallicity approximately 0.2 dex above solar. This 0.5 dex discrepancy leads one to question whether the mean stellar metallicity is as high as the population synthesis results indicate or if such metal-rich stars produce bright planetary nebulae at all. This could be a clue concerning the mechanism responsible for the variation in the number of bright planetary nebulae observed per unit luminosity in different galaxies (e.g., Hui et al. 1993).


2011 ◽  
Vol 7 (S283) ◽  
pp. 192-195 ◽  
Author(s):  
David J. Frew ◽  
Quentin A. Parker

AbstractOur understanding of planetary nebulae has been significantly enhanced as a result of several recent large surveys (Parker et al., these proceedings). These new discoveries suggest that the ‘PN phenomenon’ is in fact more heterogeneous than previously envisaged. Even after the careful elimination of mimics from Galactic PN catalogues, there remains a surprising diversity in the population of PNe and especially their central stars. Indeed, several evolutionary scenarios are implicated in the formation of objects presently catalogued as PNe. We provide a summary of these evolutionary pathways and give examples of each. Eventually, a full census of local PNe can be used to confront both stellar evolution theory and population synthesis models.


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


2015 ◽  
Vol 71-72 ◽  
pp. 299-300
Author(s):  
D. Ladjal ◽  
HerPlaNS Consortium
Keyword(s):  

2015 ◽  
Vol 71-72 ◽  
pp. 127-128
Author(s):  
B.J. Hrivnak ◽  
W. Lu ◽  
G. Van de Steene ◽  
H. Van Winckel ◽  
J. Sperauskas ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 145-152
Author(s):  
M. Joly ◽  
C. Boisson ◽  
J. Moultaka ◽  
D. Pelat

Sign in / Sign up

Export Citation Format

Share Document