A Step Towards Automated Design of Side Actions in Injection Molding of Complex Parts

Author(s):  
Ashis Gopal Banerjee ◽  
Satyandra K. Gupta
Author(s):  
Satyandra K. Gupta ◽  
Alok K. Priyadarshi

Multi-Piece molds, which consist of more than two mold pieces, are capable of producing very complex parts—parts that cannot be produced by the traditional molds. The tooling cost is also low for multi-piece molds, which makes it an ideal candidate for pre-production prototyping and bridge tooling. However, designing multi-piece molds is a time-consuming task. This paper describes geometric algorithms for automated design of multi-piece molds. A Multi-Piece Mold Design Algorithm (MPMDA) has been developed to automate several important mold-design steps: finding parting directions, locating parting lines, creating parting surfaces, and constructing mold pieces. MPMDA constructs mold pieces based on global accessibility analysis results of the part and therefore guarantees the disassembly of the mold pieces. A software system has also been developed and successfully tested on several complex industrial parts.


2021 ◽  
Vol 46 (1) ◽  
pp. 7-10
Author(s):  
Samir Butković ◽  
Emir Šarić ◽  
Muhamed Mehmedović

Metal injection molding technology is commonly used in production of small and very complex parts. Residual porosity is unavoidable characteristic of P/M parts, affecting their final properties. During injection molding phase powder-binder separation can occur, causing green density variation through cross section of the part. This behaviour is particularly pronounced as complexity of the parts increases. As a consequence, zones with different density and residual porosity can be seen after sintering. In this regard, porosity and hardness distribution of the sintered ring-shaped part is analysed and presented in the paper.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 730
Author(s):  
Tobias Vieten ◽  
Dennis Stahl ◽  
Peter Schilling ◽  
Faruk Civelek ◽  
André Zimmermann

The production of injection-molding prototypes, e.g., molded interconnect devices (MID) prototypes, can be costly and time-consuming due to the process-specific inability to replace durable steel tooling with quicker fabricated aluminum tooling. Instead, additively manufactured soft tooling is a solution for the production of small quantities and prototypes, but producing complex parts with, e.g., undercuts, is avoided due to the necessity of additional soft tooling components. The integration of automated soft slides into soft tooling has not yet been investigated and poses a challenge for the design and endurance of the tooling. The presented study covers the design and injection-molding trial of soft tooling with integrated automated slides for the production of a complex MID prototype. The design further addresses issues like the alignment of the mold components and the sealing of the complex parting plane. The soft tooling was additively manufactured via digital light processing from a silica-filled photopolymer, and 10 proper parts were injection-molded from a laser-direct structurable glass fiber-filled PET+PBT material before the first damage on the tooling occurred. Although improvements are suggested to enhance the soft tooling durability, the designed features worked as intended and are generally transferable to other part geometries.


2013 ◽  
Vol 133 (4) ◽  
pp. 105-111
Author(s):  
Chisato Yoshimura ◽  
Hiroyuki Hosokawa ◽  
Koji Shimojima ◽  
Fumihiro Itoigawa

Sign in / Sign up

Export Citation Format

Share Document