molded parts
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 86)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 14 (2) ◽  
pp. 877
Author(s):  
Ellen Fernandez ◽  
Mariya Edeleva ◽  
Rudinei Fiorio ◽  
Ludwig Cardon ◽  
Dagmar R. D’hooge

To reduce plastic waste generation from failed product batches during industrial injection molding, the sustainable production of representative prototypes is essential. Interesting is the more recent hybrid injection molding (HM) technique, in which a polymeric mold core and cavity are produced via additive manufacturing (AM) and are both placed in an overall metal housing for the final polymeric part production. HM requires less material waste and energy compared to conventional subtractive injection molding, at least if its process parameters are properly tuned. In the present work, several options of AM insert production are compared with full metal/steel mold inserts, selecting isotactic polypropylene as the injected polymer. These options are defined by both the AM method and the material considered and are evaluated with respect to the insert mechanical and conductive properties, also considering Moldex3D simulations. These simulations are conducted with inputted measured temperature-dependent AM material properties to identify in silico indicators for wear and to perform cooling cycle time minimization. It is shown that PolyJetted Digital acrylonitrile-butadiene-styrene (ABS) polymer and Multi jet fusioned (MJF) polyamide 11 (PA11) are the most promising. The former option has the best durability for thinner injection molded parts, and the latter option the best cooling cycle times at any thickness, highlighting the need to further develop AM options.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 205
Author(s):  
Daniele Tammaro ◽  
Alberto Ballesteros ◽  
Claudio Walker ◽  
Norbert Reichelt ◽  
Ulla Trommsdorff

We explore the foam extrusion of expanded polypropylene with a long chain branched random co-polypropylene to make its production process simpler and cheaper. The results show that the presence of long chain branches infer high melt strength and, hence, a wide foamability window. We explored the entire window of foaming conditions (namely, temperature and pressure) by means of an ad-hoc extrusion pilot line design. It is shown that the density of the beads can be varied from 20 to 100 kg/m3 using CO2 and isobutane as a blowing agent. The foamed beads were molded by steam-chest molding using moderate steam pressures of 0.3 to 0.35 MPa independently of the closed cell content. A characterization of the mechanical properties was performed on the molded parts. The steam molding pressure for sintering expanded polypropylene beads with a long chain branched random co-polypropylene is lower than the one usually needed for standard polypropylene beads by extrusion. The energy saving for the sintering makes the entire manufacturing processes cost efficient and can trigger new applications.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 193
Author(s):  
Carla I. Martins ◽  
Vitória Gil ◽  
Sara Rocha

This research addresses the importance of pine wood sawdust granulometry on the processing of medium-density polyethylene (MDPE)/wood composites by rotational molding and its effects on the morphological, mechanical and aesthetical properties of parts, aiming to contribute for the development of sustainable wood polymer composites (WPC) for rotational molding applications. Pine wood sawdust was sieved (<150, 150, 300, 500, 710, >1000 µm) and analyzed for its physical, morphological and thermal characteristics. Rotational molded parts were produced with matrix/wood ratios from 90/10 to 70/30 wt% considering different wood granulometries. As a natural material, wood changed its color during processing. Granulometries below 500 µm presented better sintering, homogeneity and less part defects. Furthermore, 300–500 µm favored the impact resistance (1316 N), as irregular brick-shaped wood was able to anchor to PE despite the weak interfacial adhesion observed. The increase of wood content from 10 to 30% reduced the impact properties by 40%, as a result of a highly porous structure formed, revealing sintering difficulties during processing. WPC parts of differentiated aesthetics and functionalities were achieved by rotational molding. A clear relationship between wood granulometry and WPC processing, structure and properties was identified.


Author(s):  
Antoine Dupuis ◽  
Jean-Jacques Pesce ◽  
Jean-Baptiste Marijon ◽  
Stéphane Roux ◽  
Gilles Régnier

An original methodology using Digital Image Correlation (DIC) has been designed to precisely measure full-field shrinkages of injection molded polymer plates and then to give the opportunity to compare quantitatively extensive numerical simulations to experiments. The principle of the methodology is based on the full-field strain determination between a reference image of the mold and that of injection-molded parts, which are 275 × 100 × 2.2 mm3 plates. To allow for DIC calculation, 50 µm-depth engravings were machined by electro-discharge process at the surface of the mold. The result of the analysis is a 2D full-field shrinkage map over the whole plate surface (i.e. flow and transverse), with a standard deviation of 0.03%. The marking density has been shown to have a roughly linear influence on the precision of shrinkage measurement. This methodology allows the quantification of the effect of several injection parameters on in-plane shrinkage fields: holding pressure, injection flow rate and direction, geometry of injection gates, or geometrical constraints. Once the best set of parameters of material constitutive laws is identified for the simulation of polymer plates, the simulation procedure is ready to be applied on more complex 3D geometries.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7249
Author(s):  
Maria C. Carrupt ◽  
Ana P. Piedade

In the 21st century, a great percentage of the plastic industry production is associated with both injection molding and extrusion processes. Manufactured plastic components/parts are used in several industry sectors, where the automotive and aeronautic stand out. In the injection process cycle, the cooling step represents 60% to 80% of the total injection process time, and it is used to estimate the production capabilities and costs. Therefore, efforts have been focused on obtaining more efficient cooling systems, seeking the best relationship between the shape, the quantity, and the distribution of the cooling channels into the injection molds. Concomitantly, the surface coating of the mold cavity also assumes great importance as it can provide increased hardness and a more straightforward demolding process. These aspects contribute to the decrease of rejected parts due to surface defects. However, the effect of the coated cavity on the heat transfer and, consequently, on the time of the injection cycle is not often addressed. This paper reviews the effects of the materials and surface coatings of molds cavity on the filling and cooling of the injection molding cycle. It shows how the design of cooling channels affects the cooling rates and warpage for molded parts. It also addresses how the surface coating influence the mold filling patterns and mold cooling. This review shows, more specifically, the influence of the coating process on the cooling step of the injection cycle and, consequently, in the productivity of the process.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4087
Author(s):  
Jiquan Li ◽  
Wenyong Liu ◽  
Xinxin Xia ◽  
Hangchao Zhou ◽  
Liting Jing ◽  
...  

A burn mark is a sort of serious surface defect on injection-molded parts. In some cases, it can be difficult to reduce the burn marks by traditional methods. In this study, external gas-assisted injection molding (EGAIM) was introduced to reduce the burn marks, as EGAIM has been reported to reduce the holding pressure. The parts with different severities of burn marks were produced by EGAIM and conventional injection molding (CIM) with the same molding parameters but different gas parameters. The burn marks were quantified by an image processing method and the quantitative method was introduced to discuss the influence of the gas parameters on burn marks. The results show that the burn marks can be eliminated by EGAIM without changing the structure of the part or the mold, and the severity of the burn marks changed from 4.98% with CIM to 0% with EGAIM. Additionally, the gas delay time is the most important gas parameter affecting the burn marks.


2021 ◽  
pp. 073168442110517
Author(s):  
Tamara van Roo ◽  
Stefan Kolling ◽  
Felix B Dillenberger ◽  
Joachim Amberg

Injection molding is a common process for manufacturing thermoplastic polymers. Preconnected to fabrication, mechanically loaded parts are examined in structural simulation. A crucial prerequisite for a valid structural simulation for any material is the underlying material data. To determine this data, different phenomena must be considered such as influences of load type, strain rate, environmental conditions and in case of fiber reinforced materials the fiber orientation (FO) in the considered area. Because of rheological effects, injection molded parts often possess a non-homogeneous FO distribution. This makes it challenging to create testing plates for specimen extraction with a well-defined FO over thickness and width in the considered area. In this paper, a novel testing part is introduced with an unidirectionally oriented testable area. It shows a FO degree of more than 0.75, which has been validated with μ-CT measurement and two thermoplastic materials: polyamide and polybutylene terephthalate, both reinforced with 30 weight percent of short glass fibers. In order to resolve influences of the already addressed FO distribution in injection molded parts, tensile test specimens need to be extracted out of specially designed plates via milling and cannot be injection molded directly. Experiments were carried out to study possible effects of preparation on the mechanical properties of specimens with both materials and two milling parameter sets. The first milling parameter set creates reproducible surface roughnesses, whereas the second parameter set shows a correlation between FO and roughness value: when milling perpendicularly to the main FO lower roughnesses are reached than milling in fiber direction. Uncertainties of the normalized rupture strain from orthogonally extracted specimens seem to be larger than the values from those extracted in fiber direction.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5293
Author(s):  
Emil Sasimowski ◽  
Łukasz Majewski ◽  
Tomasz Jachowicz ◽  
Michał Sąsiadek

This paper presents the assumptions of a thermodynamic equation of state for polymers according to the Renner model. The experiments involved extruding a biocomposite based on poly(butylene succinate) that was filled with ground wheat bran with its size not exceeding 200 μm. The biocomposite was produced in pellet form with three different contents by weight of wheat bran, i.e., 10%, 30% and 50%. All specimens were examined for their thermodynamic p-v-T characteristics. Taking advantage of the SimFit module of Cadmould 3D-F, experimental results were used to determine the coefficients of thermodynamic equation of state for the tested biocomposite according to the Renner model. The coefficients were then used to calculate transition temperature and to create diagrams illustrating the relationship between pressure, temperature and specific volume for the tested biocomposite. The obtained results can serve as a basis for assessing the suitability of the biocomposite for injection molding, selecting technological parameters of this process, as well as for analyzing shrinkage and defects of injection-molded parts.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2930
Author(s):  
Donghwi Kim ◽  
Youngjae Ryu ◽  
Ju-Heon Lee ◽  
Sung Woon Cha

Injection research using aluminum flakes has been conducted to realize metallic textures on the surface of plastic products. Several studies have focused on the effect of the orientation and quality of the flakes when using conventional injection molding methods; however, limited studies have focused on the foam injection molding method. In this study, we examined the orientation of aluminum flakes through foam injection with an inert gas and observed the changes in texture using a spectrophotometer and a gloss meter. The mechanical properties were also studied because the rigidity of the product, which is affected by the weight reduction that occurs during foaming, is an important factor. The results demonstrate that under foam injection molding, reflectance and gloss increased by 6% and 7 GU, respectively, compared to those obtained using conventional injection molding; furthermore, impact strength and flexural modulus increased by 62% and 15%, respectively. The results of this research can be applied to incorporate esthetic improvements to products and to develop functional parts.


Sign in / Sign up

Export Citation Format

Share Document