Effective Classification by Integrating Support Vector Machine and Association Rule Mining

Author(s):  
Keivan Kianmehr ◽  
Reda Alhajj
2018 ◽  
Vol 7 (3.3) ◽  
pp. 218 ◽  
Author(s):  
D Senthil ◽  
G Suseendran

Time series analysis is an important and complex problem in machine learning and statistics. In the existing system, Support Vector Machine (SVM) and Association Rule Mining (ARM) is introduced to implement the time series data. However it has issues with lower accuracy and higher time complexity. Also it has issue with optimal rules discovery and segmentation on time series data. To avoid the above mentioned issues, in the proposed research Sliding Window Technique based Improved ARM with Enhanced SVM (SWT-IARM with ESVM) is proposed. In the proposed system, the preprocessing is performed using Modified K-Means Clustering (MKMC). The indexing process is done by using R-tree which is used to provide faster results. Segmentation is performed by using SWT and it reduces the cost complexity by optimal segments. Then IARM is applied on efficient rule discovery process by generating the most frequent rules. By using ESVM classification approach, the rules are classified more accurately.  


Author(s):  
Abhishek Sharma

Abstract: In today’s world social networking platforms like Facebook, YouTube, twitter etc. are a great source of communication for internet users and loaded with large number of emotions, views and opinions of the people. Sentiment analysis is the study of attitudes, emotions and opinions of the people and is also known as opinion mining. Sentiment analysis is used to find the opinion i.e. negative or positive about a particular subject. In this paper an Enhanced sentiment analysis approach is presented by using the Association rule mining i.e. Apriori and machine learning approach such as Support Vector Machine. The Enhanced approach is compared with the baseline approach, on accuracy, precision, recall, and F1-score measures. The Enhanced approach for sentiment analysis is implemented using the R programming language. The Enhanced approach shows better performance in comparison to the baseline approach. Keyword: Sentiment Analysis, Opinion Mining, Support Vector Machine, Association Rule Mining, Machine Learning


2018 ◽  
Vol 7 (1.7) ◽  
pp. 121
Author(s):  
M J Carmel Mary Belinda ◽  
Umamaheswari R ◽  
Alex David S

Data mining in agriculture is a modern and emerging research technique. Data mining provide many techniques like k means algorithm, support vector machine, association rule mining and Bayesian belief network [1]. This technique can be used in agriculture for various purposes. This paper describes about how association rules mining and apriori algorithm can be used in agriculture field. This paper also describes about soil, its types and crops grown in each type of soil. The technique that has been used here can be a rough set study, but like this many efficient techniques can be applied to solve many problems in agriculture.


2020 ◽  
Vol 19 (01) ◽  
pp. 2040015
Author(s):  
Ahmad Alaiad ◽  
Hassan Najadat ◽  
Belal Mohsen ◽  
Khaled Balhaf

Background and objective: Chronic kidney disease (CKD) is one of the deadly diseases that can affect a lot of vital organs in the human body such as heart, liver, and lungs. Many individuals might be at early stage of kidney disease and not have any signs, which might lead to a sudden death. Previous research showed that early prediction of CKD is very important in the medical field for physicians’ decision-making and patients’ health and life. To this end, constructing an efficient prediction system for CKD, which is the goal of this paper, often reduces medical errors and overall healthcare cost. Methods: Classification and association rule mining techniques were integrated and utilised to construct an efficient system for predicting and diagnosing CKD and its causes using weka and SPSS as platform environments. In particular, five classification algorithms, namely, naive Bayes, decision tree, support vector machine, K-nearest neighbour, and JRip were used to achieve the research goal. In addition, Apriori algorithm was used to discover strong relationship rules between attributes. The experiments were conducted on real medical dataset collected from hospitals and patient monitoring systems. Results: The experiments achieved high accuracy of 98.50% for K-nearest neighbour (KNN) classifier and achieved 96.00% when using classier based on association rule (JRip). Conclusions: We conclude by showing that applying integrative approach by combining classification algorithms and association rule mining can significantly improve the classification accuracy and be more useful for CKD prediction. This research has also several theoretical and practical implications for the medical field and healthcare industry.


2012 ◽  
Vol 1 (4) ◽  
pp. 25-28
Author(s):  
M.Dhanabhakyam M.Dhanabhakyam ◽  
◽  
Dr.M.Punithavalli Dr.M.Punithavalli

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Rizal Setya Perdana ◽  
Umi Laili Yuhana

Kualitas perangkat lunak merupakan salah satu penelitian pada bidangrekayasa perangkat lunak yang memiliki peranan yang cukup besar dalamterbangunnya sistem perangkat lunak yang berkualitas baik. Prediksi defectperangkat lunak yang disebabkan karena terdapat penyimpangan dari prosesspesifikasi atau sesuatu yang mungkin menyebabkan kegagalan dalam operasionaltelah lebih dari 30 tahun menjadi topik riset penelitian. Makalah ini akandifokuskan pada prediksi defect yang terjadi pada kode program (code defect).Metode penanganan permasalahan defect pada kode program akan memanfaatkanpola-pola kode perangkat lunak yang berpotensi menimbulkan defect pada data setNASA untuk memprediksi defect. Metode yang digunakan dalam pencarian polaadalah memanfaatkan Association Rule Mining dengan Cumulative SupportThresholds yang secara otomatis menghasilkan nilai support dan nilai confidencepaling optimal tanpa membutuhkan masukan dari pengguna. Hasil pengujian darihasil pemrediksian defect kode perangkat lunak secara otomatis memiliki nilaiakurasi 82,35%.


Sign in / Sign up

Export Citation Format

Share Document