Classification and Association Rule Mining Technique for Predicting Chronic Kidney Disease

2020 ◽  
Vol 19 (01) ◽  
pp. 2040015
Author(s):  
Ahmad Alaiad ◽  
Hassan Najadat ◽  
Belal Mohsen ◽  
Khaled Balhaf

Background and objective: Chronic kidney disease (CKD) is one of the deadly diseases that can affect a lot of vital organs in the human body such as heart, liver, and lungs. Many individuals might be at early stage of kidney disease and not have any signs, which might lead to a sudden death. Previous research showed that early prediction of CKD is very important in the medical field for physicians’ decision-making and patients’ health and life. To this end, constructing an efficient prediction system for CKD, which is the goal of this paper, often reduces medical errors and overall healthcare cost. Methods: Classification and association rule mining techniques were integrated and utilised to construct an efficient system for predicting and diagnosing CKD and its causes using weka and SPSS as platform environments. In particular, five classification algorithms, namely, naive Bayes, decision tree, support vector machine, K-nearest neighbour, and JRip were used to achieve the research goal. In addition, Apriori algorithm was used to discover strong relationship rules between attributes. The experiments were conducted on real medical dataset collected from hospitals and patient monitoring systems. Results: The experiments achieved high accuracy of 98.50% for K-nearest neighbour (KNN) classifier and achieved 96.00% when using classier based on association rule (JRip). Conclusions: We conclude by showing that applying integrative approach by combining classification algorithms and association rule mining can significantly improve the classification accuracy and be more useful for CKD prediction. This research has also several theoretical and practical implications for the medical field and healthcare industry.

Author(s):  
Zainuri Saringat ◽  
Aida Mustapha ◽  
R. D. Rohmat Saedudin ◽  
Noor Azah Samsudin

Chronic Kidney Disease (CKD) is one of the leading cause of death contributed by other illnesses such as diabetes, hypertension, lupus, anemia or weak bones that lead to bone fractures. Early prediction of CKD is important in order to contain the disesase. However, instead of predicting the severity of CKD, the objective of this paper is to predict the diagnosis of CKD based on the symptoms or attributes observed in a particular case, whether the stage is acute or chronic. To achieve this, a classification model is proposed to label stage of severity for kidney diseases patients. The experiments then investigated the performance of the proposed classification model based on eight supervised classification algorithms, which are ZeroR, Rule Induction, Support Vector Machine, Naïve Bayes, Decision Tree, Decision Stump, k-Nearest Neighbour, and Classification via Regression. The performance of the all classifiers is evaluated based on accuracy, precision, and recall. The results showed that the regression classifier perform best in the kidney diagnostic procedure.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 218 ◽  
Author(s):  
D Senthil ◽  
G Suseendran

Time series analysis is an important and complex problem in machine learning and statistics. In the existing system, Support Vector Machine (SVM) and Association Rule Mining (ARM) is introduced to implement the time series data. However it has issues with lower accuracy and higher time complexity. Also it has issue with optimal rules discovery and segmentation on time series data. To avoid the above mentioned issues, in the proposed research Sliding Window Technique based Improved ARM with Enhanced SVM (SWT-IARM with ESVM) is proposed. In the proposed system, the preprocessing is performed using Modified K-Means Clustering (MKMC). The indexing process is done by using R-tree which is used to provide faster results. Segmentation is performed by using SWT and it reduces the cost complexity by optimal segments. Then IARM is applied on efficient rule discovery process by generating the most frequent rules. By using ESVM classification approach, the rules are classified more accurately.  


2018 ◽  
Vol 7 (2.31) ◽  
pp. 190 ◽  
Author(s):  
S Belina V.J. Sara ◽  
K Kalaiselvi

Kidney Disease and kidney failure is the one of the complicated and challenging health issues regarding human health. Without having any symptoms few diseases are detected in later stages which results in dialysis. Advanced excavating technologies can always give various possibilities to deal with the situation by determining important realations and associations in drilling down health related data.   The prediction accuracy of classification algorithms depends upon appropriate Feature Selection (FS) algorithms decrease the number of features from collection of data. FS is the procedure of choosing the most relevant features, removing irrelevant features. To identify the Chronic Kidney Disease (CKD), Hybrid Wrapper and Filter based FS (HWFFS) algorithm is proposed to reduce the dimension of CKD dataset.   Filter based FS algorithm is performed based on the three major functions: Information Gain (IG), Correlation Based Feature Selection (CFS) and Consistency Based Subset Evaluation (CS) algorithms respectively. Wrapper based FS algorithm is performed based on the Enhanced Immune Clonal Selection (EICS) algorithm to choose most important features from the CKD dataset.  The results from these FS algorithms are combined with new HWFFS algorithm using classification threshold value.  Finally Support Vector Machine (SVM) based prediction algorithm be proposed in order to predict CKD and being evaluated on the MATLAB platform. The results demonstrated with the purpose of the SVM classifier by using HWFFS algorithm provides higher prediction rate in the diagnosis of CKD when compared to other classification algorithms.  


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


Preventing Chronic Kidney Disease has become one of the most intriguing task to the healthcare society. The major objective of this paper is to deal mainly with different classification algorithms namely NaiveBayes, Multi Layer Perceptron and Support Vector Machine. The work analyzes the Chronic Kidney Disease dataset taken from the machine learning repository of UCI. Pre-processing techniques such as missing value replacement, unsupervised discretization and normalization are applied to the Chronic Kidney Disease dataset to improve accuracy. Accuracy and time are the taken as the experimental outcomes of the classification models. The final conclusion states that Support Vector Machine implements much superior than all the other classification methods.


Associative Classification in data mining technique formulates more and more simple methods and processes to find and predict the health problems like diabetes, tumors, heart problems, thyroid, cancer, malaria etc. The methods of classification combined with association rule mining gradually helps to predict large amount of data and also builds the accurate classification models for the future analysis. The data in medical area is sometimes vast and containss the information that relates to different diseases. It becomes difficult to estimate and analyze the disease problems that change from period to period based on severity. In this research paper, the use and need of associative classification for the medical data sets and the application of associative classification on the data in order to predict the by-diseases has been put front. The association rules in this context developed in training phase of data have predicted the chance of occurrence of other diseases in persons suffering with diabetes mellitus using Predictive Apriori. The associative classification algorithms like CAR is deployed in the context of accuracy measures.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ebrahime Mohammed Senan ◽  
Mosleh Hmoud Al-Adhaileh ◽  
Fawaz Waselallah Alsaade ◽  
Theyazn H. H. Aldhyani ◽  
Ahmed Abdullah Alqarni ◽  
...  

Chronic kidney disease (CKD) is among the top 20 causes of death worldwide and affects approximately 10% of the world adult population. CKD is a disorder that disrupts normal kidney function. Due to the increasing number of people with CKD, effective prediction measures for the early diagnosis of CKD are required. The novelty of this study lies in developing the diagnosis system to detect chronic kidney diseases. This study assists experts in exploring preventive measures for CKD through early diagnosis using machine learning techniques. This study focused on evaluating a dataset collected from 400 patients containing 24 features. The mean and mode statistical analysis methods were used to replace the missing numerical and the nominal values. To choose the most important features, Recursive Feature Elimination (RFE) was applied. Four classification algorithms applied in this study were support vector machine (SVM), k-nearest neighbors (KNN), decision tree, and random forest. All the classification algorithms achieved promising performance. The random forest algorithm outperformed all other applied algorithms, reaching an accuracy, precision, recall, and F1-score of 100% for all measures. CKD is a serious life-threatening disease, with high rates of morbidity and mortality. Therefore, artificial intelligence techniques are of great importance in the early detection of CKD. These techniques are supportive of experts and doctors in early diagnosis to avoid developing kidney failure.


Sign in / Sign up

Export Citation Format

Share Document