scholarly journals Halogen Bonding in the Gas Phase: A Comparison of the Iodine Bond in B⋯ICl and B⋯ICF3 for Simple Lewis Bases B

Author(s):  
J. Grant Hill ◽  
Anthony C. Legon ◽  
David P. Tew ◽  
Nicholas R. Walker
2020 ◽  
Author(s):  
Rafael Nunes ◽  
Diogo Vila Viçosa ◽  
Paulo J. Costa

<div>Halogen bonds (HaBs) are noncovalent interactions where halogen atoms act as electrophilic species interacting with Lewis bases. These interactions are relevant in biochemical systems being increasingly explored in drug discovery, mainly to modulate protein–ligand interactions. In this work, we report evidence for the existence of HaB-mediated halogen–phospholipid recognition phenomena as our molecular dynamics simulations support the existence of favorable interactions between halobenzene derivatives and both phosphate (PO) or ester (CO) oxygen acceptors from model phospholipid bilayers, thus providing insights into the role of HaBs in driving the permeation of halogenated drug like molecules across biological membranes. This represents a relevant molecular mechanism, previously overlooked, determining the pharmacological activity of halogenated molecules with implications in drug discovery and development, a place where halogenated molecules account for a significant part of the chemical space. Our data also shows that, as the ubiquitous hydrogen bond, HaBs should be accounted for in the development of membrane permeability models.</div>


2015 ◽  
Vol 21 (44) ◽  
pp. 15467-15467
Author(s):  
Stefan H. Jungbauer ◽  
Severin Schindler ◽  
Eberhardt Herdtweck ◽  
Sandro Keller ◽  
Stefan M. Huber

2019 ◽  
Author(s):  
Revannath L. Sutar ◽  
Elric Engelage ◽  
Raphael Stoll ◽  
Stefan Huber

Even though halogen bonding – the noncovalent interaction between electrophilic halogen substituents and Lewis bases – has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very little explored. Herein, we present the synthesis of chiral bidentate halogen bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen bond donor lacking any additionally active functional groups.


2017 ◽  
Vol 28 (10) ◽  
pp. 2209-2216 ◽  
Author(s):  
Christina Wegeberg ◽  
William A. Donald ◽  
Christine J. McKenzie
Keyword(s):  

Author(s):  
Yannick Geboes ◽  
Frank De Proft ◽  
Wouter A. Herrebout

To rationalize the driving factors in the competition of halogen bonding and hydrogen bonding, the complexes of the combined halogen-/hydrogen-bond donor difluoroiodomethane with the Lewis bases trimethylphosphine, dimethyl sulfide and chloromethane are studied. For all Lewis bases,ab initiocalculations lead to halogen- and hydrogen-bonded complexes. Fourier transform–IR experiments involving solutions of mixtures of difluoroiodomethane with trimethylphosphine(-d9) or dimethyl sulfide(-d6) in liquid krypton confirm the coexistence of a halogen-bonded and hydrogen-bonded complex. Also for solutions containing chloromethane, evidence of the formation of binary associations is found, but no definitive assignment of the multiple complex bands could be made. Using van't Hoff plots, the experimental complexation enthalpies for the halogen- and hydrogen-bonded complex of difluoroiodomethane with trimethylphosphine are determined to be −15.4 (4) and −10.5 (3) kJ mol−1, respectively, while for the halogen- and hydrogen-bonded complexes with dimethyl sulfide, the values are −11.3 (5) and −7.7 (6) kJ mol−1, respectively. The experimental observation that for both trimethylphospine and dimethyl sulfide the halogen-bonded complex is more stable than the hydrogen-bonded complex supports the finding that softer Lewis bases tend to favor iodine halogen bonding over hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document