scholarly journals Low-Wavenumber Forcing and Turbulent Energy Dissipation

Author(s):  
Charles R. Doering ◽  
Nikola P. Petrov
1998 ◽  
Vol 53 (10-11) ◽  
pp. 828-832
Author(s):  
Feng Quing-Zeng

Abstract The log-compound-Poisson distribution for the breakdown coefficients of turbulent energy dissipation is proposed, and the scaling exponents for the velocity difference moments in fully developed turbulence are obtained, which agree well with experimental values up to measurable orders. The under-lying physics of this model is directly related to the burst phenomenon in turbulence, and a detailed discussion is given in the last section.


1998 ◽  
Vol 16 (12) ◽  
pp. 1607-1618 ◽  
Author(s):  
C. M. Hall ◽  
A. H. Manson ◽  
C. E. Meek

Abstract. The spring of 1997 has represented a stable period of operation for the joint University of Tromsø / University of Saskatchewan MF radar, being between refurbishment and upgrades. We examine the horizontal winds from the February to June inclusive and also include estimates of energy dissipation rates derived from signal fading times and presented as upper limits on the turbulent energy dissipation rate, ε. Here we address the periodicity in the dynamics of the upper mesosphere for time scales from hours to one month. Thus, we are able to examine the changes in the spectral signature of the mesospheric dynamics during the transition from winter to summer states.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides).


1994 ◽  
Vol 5 (4) ◽  
pp. 537-557 ◽  
Author(s):  
M. Bertsch ◽  
R. Dal Passo ◽  
R. Kersner

We study the semi-empirical b—ε model which describes the time evolution of turbulent spots in the case of equal diffusivity of the turbulent energy density b and the energy dissipation rate ε. We prove that the system of two partial differential equations possesses a solution, and that after some time this solution exhibits self-similar behaviour, provided that the system has self-similar solutions. The existence of such self-similar solutions depends upon the value of a parameter of the model.


Tellus B ◽  
2018 ◽  
Vol 70 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Dongliang Zhao ◽  
Nan Jia ◽  
Yuanxu Dong

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.


1995 ◽  
Author(s):  
Viktor A. Banakh ◽  
Natalia N. Kerkis ◽  
Igor N. Smalikho ◽  
Friedrich Koepp ◽  
Christian Werner

Sign in / Sign up

Export Citation Format

Share Document