Classification of Fish Stock-Recruitment Relationships in Different Environmental Regimes by Fuzzy Logic with Bootstrap Re-sampling Approach

2006 ◽  
pp. 385-408
Author(s):  
D. G. Chen
2001 ◽  
Vol 58 (11) ◽  
pp. 2139-2148 ◽  
Author(s):  
D G Chen

A fuzzy logic approach is developed to model and test the impact of environmental regimes on fish stock–recruitment relationships. Traditional methods use environmental variables to classify stock–recruitment data into different membership percentiles followed by fitting the stock–recruitment models for each subset. In contrast, the fuzzy logic approach uses a continuous membership function to provide a rational basis for the classification. Thus, parameter estimation is based on a more logically consistent foundation without resorting to subjective partitions. This new approach is applied to herring stock from the west coast of Vancouver Island (Clupea harengus pallasi) using sea surface temperature as the environmental variable and to Pacific halibut stock (Hippoglossus stenolepis) using the Pacific Decadal Oscillation as the environmental variable. From these applications, the herring stock–recruitment relationships were found to vary significantly during different regimes, whereas this was not the case for halibut. However, in both instances, the fuzzy logic approach demonstrated that density-dependent effects differed between regimes. The fuzzy logic model consistently outperformed traditional approaches as measured by several diagnostic criteria. Because fuzzy logic models address uncertainty better than traditional approaches, they have the potential to improve our ability to understand factors influencing stock–recruitment relationships and thereby manage fisheries more effectively.


2000 ◽  
Vol 57 (9) ◽  
pp. 1878-1887 ◽  
Author(s):  
D G Chen ◽  
N B Hargreaves ◽  
D M Ware ◽  
Y Liu

A new fuzzy logic model with a genetic algorithm is developed that overcomes some of the inherent uncertainties in the fish stock-recruitment process. This model is applied to stock-recruitment relationships for the Southeast Alaska pink salmon (Oncorhynchus gorbuscha) and the West Coast Vancouver Island Pacific herring (Clupea pallasi) stocks. In both examples, the annual mean sea surface temperature is used as an environmental intervention in the model. The fuzzy logic model provides the functional relationship between the number of fish spawners and the sea surface temperature that is used to reconstruct the historical fish recruitment time series and also to predict the number of fish that will recruit in the future. Globally optimized genetic learning algorithms are used to find the optimal values of the parameters for the fuzzy logic model. The results from this fuzzy logic model are compared with results from both a traditional Ricker stock-recruitment model and a recent artificial neural network model. These comparisons demonstrate the superior capability of the fuzzy logic model for addressing problems of uncertainty and vagueness in both the data and the stock-recruitment relationship. The fuzzy logic model approach is recommended as a useful addition to the analytical tools currently available for fish stock assessment and management.


Author(s):  
Arjon Turnip ◽  
Gilbert F. Y. Sihombing ◽  
Giraldo F. J. Sihombing ◽  
George Michael Tampubolon ◽  
Peri Turnip ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document