oncorhynchus gorbuscha
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 58)

H-INDEX

43
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0255752
Author(s):  
Kris A. Christensen ◽  
Eric B. Rondeau ◽  
Dionne Sakhrani ◽  
Carlo A. Biagi ◽  
Hollie Johnson ◽  
...  

Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years. To uncover the influence of this genetic isolation, reference genome assemblies were generated for each year-class and whole genome re-sequencing data was collected from salmon of both year-classes. The salmon were sampled from six Canadian rivers and one Japanese river. At multiple centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the odd-year genome near a centromere. These Fst peaks may be the result of a centromere drive or a combination of reduced recombination and genetic drift, and they could influence speciation. Other regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under selection were mostly associated with genes related to immune function, organ development/maintenance, and behaviour.


2021 ◽  
Author(s):  
Tora Paulsen ◽  
Odd Terje Sandlund ◽  
Gunnel Østborg ◽  
Eva B. Thorstad ◽  
Peder Fiske ◽  
...  

2021 ◽  
Vol 201 (3) ◽  
pp. 702-711
Author(s):  
O. V. Zelennikov ◽  
T. A. Schneider ◽  
M. Yu. Stekolshchikova

State of blood cells is examined for juveniles of pink and chum salmon sampled from Lesnoy Pugachevsky, Taranaisky and Okhotsky hatcheries in Sakhalin in May-June of 2018 and 2019 and caught in the Ochepukha, Pugachevka and Taranay Rivers during their catadromous migration to the sea. Both hatchery and wild juveniles of both species were characterized by high adaptive capabilities evidenced with high content of young forms of erythrocytes in the blood (17.0–31.0 %), significant portion of lymphocytes (60.8–92.0 %), and small number of neutrophils. The high adaptive capabilities were confirmed in the experiment, when juveniles of pink salmon were placed in the seawater without preliminary acclimation, but noticeable changes in the state of blood cells were not revealed both for wild and hatchery-reared specimens. Proportion of different blood cells was highly variable for juveniles of both artificial and natural origin but was more similar between the fry hatched at the same hatcheries or in the same rivers. A case of increased number of neutrophils was noted in 2019 for certain groups of juveniles, with total increasing of platelets in the blood that was explained by an external influence on the juveniles.


2021 ◽  
Vol 48 (5) ◽  
pp. 546-554
Author(s):  
M. V. Churova ◽  
N. S. Shulgina ◽  
M. Yu. Krupnova ◽  
D. A. Efremov ◽  
N. N. Nemova

Abstract Biochemical adaptations of energy metabolism and some pathways of glucose oxidation during a change in salinity of the environment in larvae and smolts of the pink salmon Oncorhynchus gorbuscha (Walb.) inhabiting the White Sea were studied. We assayed the activity of energy and carbohydrate metabolism enzymes (cytochrome c oxidase (COХ), lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G6PDH), 1-glycerophosphate dehydrogenase (1-GPDH), and aldolase) in pink salmon larvae in a short-term aquarium experiment and in pink salmon smolts in a long-term cage experiment simulating the transition of juveniles from freshwater to a marine environment. A decrease in the activity of COX, LDH, 1‑GPDH, and aldolase already in the first hour after the transfer of larvae to seawater was shown. Smolts kept in the estuary and in the sea had low levels of activity of 1-GPDH and aldolase in comparison with individuals from the river. Most likely, in the salmon juveniles studied, there was a redistribution of carbohydrates between the reactions of aerobic and anaerobic metabolism in favor of anaerobic ATP synthesis. No changes in the enzyme activity of the pentose phosphate pathway, G-6-PDH, were found in either larvae or smolts compared with the individuals kept in freshwater. Maintenance of the required levels of anaerobic metabolism and of the pentose phosphate pathway is probably one of the mechanisms of biochemical adaptation of pink salmon to changes in salinity.


Sign in / Sign up

Export Citation Format

Share Document