Direct Numerical Simulation of Non-Linear Transitional Stages in an Experimentally Investigated Laminar Separation Bubble

Author(s):  
Olaf Marxen ◽  
Ulrich Rist
2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Francois Cadieux ◽  
Julian A. Domaradzki ◽  
Taraneh Sayadi ◽  
Sanjeeb Bose

Flows over airfoils and blades in rotating machinery for unmanned and microaerial vehicles, wind turbines, and propellers consist of different flow regimes. A laminar boundary layer near the leading edge is often followed by a laminar separation bubble with a shear layer on top of it that experiences transition to turbulence. The separated turbulent flow then reattaches and evolves downstream from a nonequilibrium turbulent boundary layer to an equilibrium one. Typical Reynolds-averaged Navier–Stokes (RANS) turbulence modeling methods were shown to be inadequate for such laminar separation bubble flows (Spalart and Strelets, 2000, “Mechanisms of Transition and Heat Transfer in a Separation Bubble,” J. Fluid Mech., 403, pp. 329–349). Direct numerical simulation (DNS) is the most reliable but is also the most computationally expensive alternative. This work assesses the capability of large eddy simulations (LES) to reduce the resolution requirements for such flows. Flow over a flat plate with suitable velocity boundary conditions away from the plate to produce a separation bubble is considered. Benchmark DNS data for this configuration are generated with the resolution of 59 × 106 mesh points; also used is a different DNS database with 15 × 106 points (Spalart and Strelets, 2000, “Mechanisms of Transition and Heat Transfer in a Separation Bubble,” J. Fluid Mech., 403, pp. 329–349). Results confirm that accurate LES are possible using O(1%) of the DNS resolution.


2000 ◽  
Vol 403 ◽  
pp. 223-250 ◽  
Author(s):  
M. ALAM ◽  
N. D. SANDHAM

Direct numerical simulation of the incompressible Navier-Stokes equations is used to study flows where laminar boundary-layer separation is followed by turbulent reattachment forming a closed region known as a laminar separation bubble. In the simulations a laminar boundary layer is forced to separate by the action of a suction profile applied as the upper boundary condition. The separated shear layer undergoes transition via oblique modes and Λ-vortex-induced breakdown and reattaches as turbulent flow, slowly recovering to an equilibrium turbulent boundary layer. Compared with classical experiments the computed bubbles may be classified as ‘short’, as the external potential flow is only affected in the immediate vicinity of the bubble. Near reattachment budgets of turbulence kinetic energy are dominated by turbulence events away from the wall. Characteristics of near-wall turbulence only develop several bubble lengths downstream of reattachment. Comparisons are made with two-dimensional simulations which fail to capture many of the detailed features of the full three-dimensional simulations. Stability characteristics of mean flow profiles are computed in the separated flow region for a family of velocity profiles generated using simulation data. Absolute instability is shown to require reverse flows of the order of 15–20%. The three-dimensional bubbles with turbulent reattachment have maximum reverse flows of less than 8% and it is concluded that for these bubbles the basic instability is convective in nature.


CFD Letters ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 36-51
Author(s):  
Mohamed Ibren ◽  
Amelda Dianne Andan ◽  
Waqar Asrar ◽  
Erwin Sulaeman

The development of sophisticated unmanned aerial vehicles and wind turbines for daily activities has triggered the interest of researchers. However, understanding the flow phenomena is a strenuous task due to the complexity of the flow field. The engaging topic calls for more research at low Reynolds numbers. The computational investigations on a two-dimensional (2D) airfoil are presented in this paper. Numerical simulation of unsteady, laminar-turbulent flow around NACA 0015 airfoil was performed by using shear-stress transport (SST) model at relatively low Reynolds number (8.4 × 104 to 1.7 × 105) and moderate angles of attack (0 ≤ α ≤ 6). In general, on the suction side, with increasing Reynolds number and angles of attack, separation, and reattachment point shifts upstream and concurrently shrinking the size of the laminar bubble. However, On the pressure side, the laminar bubble is seen to move toward the trailing edge at the relatively same size as the angle of attack increases. Moreover, the variations in the angle of attack have more influence on the laminar separation bubble characteristics as compared to the Reynolds number. The reattachment points were barely observed for the range of the angles of attack studied. At very high angles of attack, it is recommended to simulate the flow field using large eddy simulation or direct numerical simulation since the flow is considered three-dimensional and detached from the surface thus forming a complex phenomenon.


Sign in / Sign up

Export Citation Format

Share Document