Polyelectrolyte-induced structural changes in the isotropic phase of the sulfobetaine/ pentanol/toluene/water system

Author(s):  
Joachim Koetz ◽  
C. Günther ◽  
S. Kosmella ◽  
E. Kleinpeter ◽  
G. Wolf
Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1023
Author(s):  
Peter Bury ◽  
Marek Veveričík ◽  
František Černobila ◽  
Peter Kopčanský ◽  
Milan Timko ◽  
...  

The surface acoustic waves (SAWs) were used to study the effect of magnetic nanoparticles on nematic liquid crystal (NLC) behavior in weak magnetic and electric fields. The measurement of the attenuation of SAW propagating along the interface between piezoelectric substrate and liquid crystal is showed as an effective tool to study processes of structural changes. The magnetic nanoparticles Fe3O4 of nanorod shape and different low volume concentration were added to the NLC (4-(trans-4′-n-hexylcyclohexyl)-isothiocyanatobenzene (6CHBT)) during its isotropic phase. In contrast to undoped liquid crystals the distinctive different SAW attenuation responses induced by both magnetic and also electric fields in studied NLC samples were observed suggesting both structural changes and the orientational coupling between both magnetic and electric moments of nanoparticles and the director of the NLC molecules. Experimental measurements including the investigation under linearly increasing and/or jumped magnetic and electrical fields, respectively, as well as the investigation of temperature and time influences on structural changes were done. The investigation of the SAW anisotropy gives supplemental information about the internal structure of nanoparticles in investigated NLCs. In addition, some magneto-optical investigations were performed to support SAW results and study their stability and switching time. The analysis of observed SAW attenuation characteristics confirmed the role of concentration of magnetic nanoparticles on the resultant behavior of investigated NLC compounds. Obtained results are discussed within the context of previous ones. The theoretical background of the presented SAW investigation is introduced, too.


1997 ◽  
Vol 30 (5) ◽  
pp. 733-738 ◽  
Author(s):  
P. J. Quinn

The lipids from biological membranes, when dispersed in aqueous media, form a variety of phases that include bilayer and nonbilayer arrangements of the molecules. Such phases have been well characterized by conventional X-ray powder diffraction and other methods. Transitions between phases are believed to underlie a number of dynamic membrane processes such as membrane fusion. Studies of the kinetics and mechanisms of phase transitions in lipid–water mixtures require high-intensity synchrotron X-ray sources to monitor the associated structural changes. Facilities at four synchrotron sources providing facilities to measure kinetics and mechanisms of phase transitions in lipid–water systems are described. Some examples are given of how these facilities have been used to measure kinetics of transitions in the dipalmitoylphosphatidylcholine–water system and how different transition mechanisms are defined.


Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
W. Kunath ◽  
E. Zeitler ◽  
M. Kessel

The features of digital recording of a continuous series (movie) of singleelectron TV frames are reported. The technique is used to investigate structural changes in negatively stained glutamine synthetase molecules (GS) during electron irradiation and, as an ultimate goal, to look for the molecules' “undamaged” structure, say, after a 1 e/Å2 dose.The TV frame of fig. la shows an image of 5 glutamine synthetase molecules exposed to 1/150 e/Å2. Every single electron is recorded as a unit signal in a 256 ×256 field. The extremely low exposure of a single TV frame as dictated by the single-electron recording device including the electron microscope requires accumulation of 150 TV frames into one frame (fig. lb) thus achieving a reasonable compromise between the conflicting aspects of exposure time per frame of 3 sec. vs. object drift of less than 1 Å, and exposure per frame of 1 e/Å2 vs. rate of structural damage.


Author(s):  
K. Kovacs ◽  
E. Horvath ◽  
J. M. Bilbao ◽  
F. A. Laszlo ◽  
I. Domokos

Electrolytic lesions of the pituitary stalk in rats interrupt adenohypophysial blood flow and result in massive infarction of the anterior lobe. In order to obtain a deeper insight into the morphogenesis of tissue injury and to reveal the sequence of events, a fine structural investigation was undertaken on adenohypophyses of rats at various intervals following destruction of the pituitary stalk.The pituitary stalk was destroyed electrolytically, with a Horsley-Clarke apparatus on 27 male rats of the R-Amsterdam strain, weighing 180-200 g. Thirty minutes, 1,2,4,6 and 24 hours after surgery the animals were perfused with a glutaraldehyde-formalin solution. The skulls were then opened and the pituitary glands removed. The anterior lobes were fixed in glutaraldehyde-formalin solution, postfixed in osmium tetroxide and embedded in Durcupan. Ultrathin sections were stained with uranyl acetate and lead citrate and investigated with a Philips 300 electron microscope.


Sign in / Sign up

Export Citation Format

Share Document