isotropic phase
Recently Published Documents


TOTAL DOCUMENTS

734
(FIVE YEARS 65)

H-INDEX

47
(FIVE YEARS 4)

Author(s):  
Sunil Vyas ◽  
An-Cin Li ◽  
Yu-Hsiang Lin ◽  
J Andrew Yeh ◽  
Yuan Luo

Abstract Optical phase shifts generated by the spatial variation of refractive index and thickness inside the transparent samples can be determined by intensity measurements through quantitative phase contrast imaging. In this review, we focus on isotropic quantitative differential phase-contrast microscopy(qDPC), which is a non-interferometric quantitative phase imaging technique and belongs to the class of deterministic phase retrieval from intensity. The qDPC is based on the principle of a weak object transfer function together with the first-order Born approximation in a partially coherent illumination system and wide-field detection, which offers multiple advantages. We review basic principles, imaging systems, and demonstrate examples of differential phase contrast (DPC) imaging for biomedical applications. In addition to the previous work, we present the latest results for isotropic phase contrast enhancements using a deep learning approach. We implemented a supervised learning approach with the U-Net model to reduce the number of measurements required for multi-axis measurements associated with the isotropic phase transfer function. We show that a well-designed and trained neural network provide a fast and efficient way to predict quantitative phase maps for live cells, which can help in determining morphological parameters. The prospects of deep learning in quantitative phase microscopy, particularly for isotropic quantitative phase estimation, are discussed.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1555
Author(s):  
Hussain Sami ◽  
Osama Younis ◽  
Yui Maruoka ◽  
Kenta Yamaguchi ◽  
Kumar Siddhant ◽  
...  

The luminescence of materials in condensed phases is affected by not only their molecular structures but also their aggregated structures. In this study, we designed new liquid-crystalline luminescent materials based on biphenylacetylene with a bulky trimethylsilyl terminal group and a flexible alkoxy chain. The luminescence properties of the prepared materials were evaluated, with a particular focus on the effects of phase transitions, which cause changes in the aggregated structures. The length of the flexible chain had no effect on the luminescence in solution. However, in crystals, the luminescence spectral shape depended on the chain length because varying the chain length altered the crystal structure. Interestingly, negative thermal quenching of the luminescence from these materials was observed in condensed phases, with the isotropic phase obtained at high temperatures exhibiting a considerable increase in luminescence intensity. This thermal enhancement of the luminescence suggests that the less- or nonemissive aggregates formed in crystals are dissociated in the isotropic phase. These findings can contribute toward the development of new material design concepts for useful luminescent materials at high temperatures.


2021 ◽  
Vol 15 ◽  
Author(s):  
Robert Kozma ◽  
Bernard J. Baars ◽  
Natalie Geld

Spatio-temporal brain activity monitored by EEG recordings in humans and other mammals has identified beta/gamma oscillations (20–80 Hz), which are self-organized into spatio-temporal structures recurring at theta/alpha rates (4–12 Hz). These structures have statistically significant correlations with sensory stimuli and reinforcement contingencies perceived by the subject. The repeated collapse of self-organized structures at theta/alpha rates generates laterally propagating phase gradients (phase cones), ignited at some specific location of the cortical sheet. Phase cones have been interpreted as neural signatures of transient perceptual experiences according to the cinematic theory of brain dynamics. The rapid expansion of essentially isotropic phase cones is consistent with the propagation of perceptual broadcasts postulated by Global Workspace Theory (GWT). What is the evolutionary advantage of brains operating with repeatedly collapsing dynamics? This question is answered using thermodynamic concepts. According to neuropercolation theory, waking brains are described as non-equilibrium thermodynamic systems operating at the edge of criticality, undergoing repeated phase transitions. This work analyzes the role of long-range axonal connections and metabolic processes in the regulation of critical brain dynamics. Historically, the near 10 Hz domain has been associated with conscious sensory integration, cortical “ignitions” linked to conscious visual perception, and conscious experiences. We can therefore combine a very large body of experimental evidence and theory, including graph theory, neuropercolation, and GWT. This cortical operating style may optimize a tradeoff between rapid adaptation to novelty vs. stable and widespread self-organization, therefore resulting in significant Darwinian benefits.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3059
Author(s):  
David Attia ◽  
Evgenee Yekymov ◽  
Yulia Shmidov ◽  
Yael Levi-Kalisman ◽  
Orit Mendelson ◽  
...  

Hybrids comprising cellulose nanocrystals (CNCs) and percolated networks of single-walled carbon nanotubes (SWNTs) may serve for the casting of hybrid materials with improved optical, mechanical, electrical, and thermal properties. However, CNC-dispersed SWNTs are depleted from the chiral nematic (N*) phase and enrich the isotropic phase. Herein, we report that SWNTs dispersed by non-ionic surfactant or triblock copolymers are incorporated within the surfactant-mediated CNC mesophases. Small-angle X-ray measurements indicate that the nanostructure of the hybrid phases is only slightly modified by the presence of the surfactants, and the chiral nature of the N* phase is preserved. Cryo-TEM and Raman spectroscopy show that SWNTs networks with typical mesh size from hundreds of nanometers to microns are distributed equally between the two phases. We suggest that the adsorption of the surfactants or polymers mediates the interfacial interaction between the CNCs and SWNTs, enhancing the formation of co-existing meso-structures in the hybrid phases.


2021 ◽  
Author(s):  
Ryo Kimura ◽  
Hidetsugu Kitakado ◽  
Takuya Yamakado ◽  
Hiroyuki Yoshida ◽  
Shohei Saito

Local viscosity change in the thermal phase transition of a nematic liquid crystal, 5CB, has been analyzed by doping fluorescent viscosity probes, flapping fluorophores (FLAP) as well as a molecular rotor BODIPY-C12. As a result, only flapping anthraceneimide has successfully monitored a small viscosity change (corresponding to a few cP (centipoise) change in shear viscosity around 25 cP) in the nematic-to-isotropic phase transition by ratiometric spectroscopy. In addition, analysis of fluorescence anisotropy indicates that the emissive species (planarized flapping anthraceneimides) are aligned parallel to the director of 5CB in the nematic phase.


2021 ◽  
Vol 2 (4) ◽  
pp. 466-481
Author(s):  
Bhupendra Pratap Singh ◽  
Samiksha Sikarwar ◽  
Kamal Kumar Pandey ◽  
Rajiv Manohar ◽  
Michael Depriester ◽  
...  

In this paper, we investigate a commercial nematic liquid crystal (LC) mixture namely E7 dispersed with small concentrations of multi-walled carbon nanotubes (MWCNTs). The dielectric and electro-optical characterizations have been carried out in the homogeneously and vertically aligned LC cells. The electro-optical response of LC molecules has been enhanced by 60% after the addition of MWCNTs, which is attributed to the reduced rotational viscosity in the composites. MWCNTs act like barricades for ionic impurities by reducing them up to ∼34.3% within the dispersion limit of 0.05 wt%. The nematic–isotropic phase transition temperature (TNI) of the E7 LC has also been shifted towards the higher temperature, resulting in a more ordered nematic phase. The enhanced birefringence and orientational order parameter in the LC-MWCNTs are attributed to π-π electron stacking between the LC molecules and the MWCNTs. The outlined merits of the LC-MWCNTs composites evince their suitability for ultrafast nematic-based electro-optical devices.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5491
Author(s):  
Nozomi Sato ◽  
Kenji Katayama

The initial processes of the phase transition dynamics of liquid crystals (LCs) subject to UV pulse irradiation were clarified using a nanosecond time-resolved imaging technique called pattern-illumination time-resolved phase microscopy (PI-PM). Two types of LCs were studied: a photo-responsive LC and dye-doped LCs. We found two steps of molecular disordering processes in the phase transition, namely local disordering proceeding anisotropically, followed by the spreading of the isotropic phase. These two processes were separated for a photo-responsive LC while being simultaneously observed for the dye-doped LCs. It was found that the photomechanical dyes induced the phase transition process faster than the photothermal dyes.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2363
Author(s):  
Ondřej Dlouhý ◽  
Václav Karlický ◽  
Rameez Arshad ◽  
Ottó Zsiros ◽  
Ildikó Domonkos ◽  
...  

In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments—in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering—but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.


2021 ◽  
pp. 1-8
Author(s):  
Mengxiao Jia ◽  
Mofei Sha ◽  
Chunxin Hu ◽  
Bo Zhang ◽  
Hongmei Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document