Non-Gaussian Statistics and Anomalous diffusion in Porous Media

Author(s):  
Pabitra N. Sen
2016 ◽  
Vol 40 (3) ◽  
pp. 1850-1862 ◽  
Author(s):  
J.A. Ferreira ◽  
G. Pena ◽  
G. Romanazzi

1998 ◽  
Vol 58 (3) ◽  
pp. 3640-3648 ◽  
Author(s):  
Paolo Allegrini ◽  
Marco Buiatti ◽  
Paolo Grigolini ◽  
Bruce J. West

2005 ◽  
Vol 73 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Charles-Guobing Jiang ◽  
M. Ziad Saghir ◽  
M. Kawaji

Thermal diffusion, or Soret effect, in porous media is mathematically modeled with the Firoozabadi model based on non-equilibrium thermodynamics. The Soret effect in a binary mixture is investigated in a vertical cavity with heterogeneous permeability, where natural convection can occur. The thermo solutal convection with heterogeneous permeability was studied in terms of flow pattern, concentration distribution, component separation ratio, and Soret coefficient distribution. A consistent analysis was conducted and it is concluded that the Soret coefficient of thermal diffusion in porous media strongly depends on the heterogeneity of permeability.


2021 ◽  
Author(s):  
Jorge Luis Chau ◽  
Raffaele Marino ◽  
Fabio Feraco ◽  
Juan M. Urco ◽  
Gerd Baumgarten ◽  
...  

<p>The polar summer mesosphere is the Earth’s coldest region, allowing the formation of mesospheric ice clouds, potentially linked to climate change. These clouds produce strong radar echoes that are used as tracers of mesospheric dynamics. Here we report the first observations of extreme vertical drafts in the mesosphere, characterized by velocities larger than 40 m/s, i.e., more than five standard deviations larger than the observed wind variability. The morphology seems to resemble mesospheric bores, however the scales observed are much larger. Powerful vertical drafts, intermittent in space and time, emerge also in direct numerical simulations of stratified flows, predicting non-Gaussian statistics of vertical velocities. This evidence suggests that mesospheric bores might result from the interplay of gravity waves and turbulent motions. Our extreme event is interpreted as a mesospheric "super-bore", impacting mesospheric mixing and ice-formation, and would potentially impact planning of sub-orbital flights, and the investigation of biological material in the near space.</p>


Sign in / Sign up

Export Citation Format

Share Document