TurboBrain: A neural network with direct learning based on linear or Non-Linear Threshold Logics

Author(s):  
Daniel M. Dubois ◽  
Germano Resconi ◽  
Alessandro Raymondi
2019 ◽  
Vol 8 (4) ◽  
pp. 216
Author(s):  
Renas Rajab Asaad ◽  
Rasan I. Ali

Back propagation neural network are known for computing the problems that cannot easily be computed (huge datasets analysis or training) in artificial neural networks. The main idea of this paper is to implement XOR logic gate by ANNs using back propagation neural network for back propagation of errors, and sigmoid activation function. This neural network to map non-linear threshold gate. The non-linear used to classify binary inputs (x1, x2) and passing it through hidden layer for computing coefficient_errors and gradient_errors (Cerrors, Gerrors), after computing errors by (ei = Output_desired- Output_actual) the weights and thetas (ΔWji = (α)(Xj)(gi), Δϴj = (α)(-1)(gi)) are changing according to errors. Sigmoid activation function is = sig(x)=1/(1+e-x) and Derivation of sigmoid is = dsig(x) = sig(x)(1-sig(x)). The sig(x) and Dsig(x) is between 1 to 0.


2021 ◽  
Vol 11 (7) ◽  
pp. 3138
Author(s):  
Mingchi Zhang ◽  
Xuemin Chen ◽  
Wei Li

In this paper, a deep neural network hidden Markov model (DNN-HMM) is proposed to detect pipeline leakage location. A long pipeline is divided into several sections and the leakage occurs in different section that is defined as different state of hidden Markov model (HMM). The hybrid HMM, i.e., DNN-HMM, consists of a deep neural network (DNN) with multiple layers to exploit the non-linear data. The DNN is initialized by using a deep belief network (DBN). The DBN is a pre-trained model built by stacking top-down restricted Boltzmann machines (RBM) that compute the emission probabilities for the HMM instead of Gaussian mixture model (GMM). Two comparative studies based on different numbers of states using Gaussian mixture model-hidden Markov model (GMM-HMM) and DNN-HMM are performed. The accuracy of the testing performance between detected state sequence and actual state sequence is measured by micro F1 score. The micro F1 score approaches 0.94 for GMM-HMM method and it is close to 0.95 for DNN-HMM method when the pipeline is divided into three sections. In the experiment that divides the pipeline as five sections, the micro F1 score for GMM-HMM is 0.69, while it approaches 0.96 with DNN-HMM method. The results demonstrate that the DNN-HMM can learn a better model of non-linear data and achieve better performance compared to GMM-HMM method.


2020 ◽  
Vol 53 (2) ◽  
pp. 12334-12339
Author(s):  
M. Bonfanti ◽  
F. Carapellese ◽  
S.A. Sirigu ◽  
G. Bracco ◽  
G. Mattiazzo

Sign in / Sign up

Export Citation Format

Share Document