The Algebra Structure of Secondary Cohomology

Keyword(s):  
2010 ◽  
Vol 17 (2) ◽  
pp. 391-404
Author(s):  
Mikael Vejdemo-Johansson

Abstract Kadeishvili's proof of theminimality theorem [T. Kadeishvili, On the homology theory of fiber spaces, Russ. Math. Surv. 35:3 (1980), 231–238] induces an algorithm for the inductive computation of an A ∞-algebra structure on the homology of a dg-algebra. In this paper, we prove that for one class of dg-algebras, the resulting computation will generate a complete A ∞-algebra structure after a finite amount of computational work.


1967 ◽  
Vol 8 (1) ◽  
pp. 41-49 ◽  
Author(s):  
F. F. Bonsall

Let B(X) denote the Banach algebra of all bounded linear operators on a Banach space X. Let t be an element of B(X), and let edenote the identity operator on X. Since the earliest days of the theory of Banach algebras, ithas been understood that the natural setting within which to study spectral properties of t is the Banach algebra B(X), or perhaps a closed subalgebra of B(X) containing t and e. The effective application of this method to a given class of operators depends upon first translating the data into terms involving only the Banach algebra structure of B(X) without reference to the underlying space X. In particular, the appropriate topology is the norm topology in B(X) given by the usual operator norm. Theorem 1 carries out this translation for the class of compact operators t. It is proved that if t is compact, then multiplication by t is a compact linear operator on the closed subalgebra of B(X) consisting of operators that commute with t.


1999 ◽  
Vol 40 (5) ◽  
pp. 2494-2499 ◽  
Author(s):  
Salih Çelik

2017 ◽  
Vol 69 (1) ◽  
pp. 21-53 ◽  
Author(s):  
Darij Grinberg

AbstractThe dual immaculate functions are a basis of the ring QSym of quasisymmetric functions and form one of the most natural analogues of the Schur functions. The dual immaculate function corresponding to a composition is a weighted generating function for immaculate tableaux in the same way as a Schur function is for semistandard Young tableaux; an immaculate tableau is defined similarly to a semistandard Young tableau, but the shape is a composition rather than a partition, and only the first column is required to strictly increase (whereas the other columns can be arbitrary, but each row has to weakly increase). Dual immaculate functions were introduced by Berg, Bergeron, Saliola, Serrano, and Zabrocki in arXiv:1208.5191, and have since been found to possess numerous nontrivial properties.In this note, we prove a conjecture of M. Zabrocki that provides an alternative construction for the dual immaculate functions in terms of certain “vertex operators”. The proof uses a dendriform structure on the ring QSym; we discuss the relation of this structure to known dendriformstructures on the combinatorial Hopf algebras FQSym andWQSym.


2017 ◽  
Vol 69 (02) ◽  
pp. 453-480
Author(s):  
Timothée Marquis ◽  
Karl-Hermann Neeb

Abstract The closest infinite-dimensional relatives of compact Lie algebras are Hilbert-Lie algebras, i.e., real Hilbert spaces with a Lie algebra structure for which the scalar product is invariant. Locally affine Lie algebras (LALAs) correspond to double extensions of (twisted) loop algebras over simple Hilbert-Lie algebras , also called affinisations of . They possess a root space decomposition whose corresponding root system is a locally affine root system of one of the 7 families for some infinite set J. To each of these types corresponds a “minimal ” affinisation of some simple Hilbert-Lie algebra , which we call standard. In this paper, we give for each affinisation g of a simple Hilbert-Lie algebra an explicit isomorphism from g to one of the standard affinisations of . The existence of such an isomorphism could also be derived from the classiffication of locally affine root systems, but for representation theoretic purposes it is crucial to obtain it explicitly as a deformation between two twists that is compatible with the root decompositions. We illustrate this by applying our isomorphism theorem to the study of positive energy highest weight representations of g. In subsequent work, this paper will be used to obtain a complete classification of the positive energy highest weight representations of affinisations of .


Sign in / Sign up

Export Citation Format

Share Document