scholarly journals Blackbox computation of A ∞-algebras

2010 ◽  
Vol 17 (2) ◽  
pp. 391-404
Author(s):  
Mikael Vejdemo-Johansson

Abstract Kadeishvili's proof of theminimality theorem [T. Kadeishvili, On the homology theory of fiber spaces, Russ. Math. Surv. 35:3 (1980), 231–238] induces an algorithm for the inductive computation of an A ∞-algebra structure on the homology of a dg-algebra. In this paper, we prove that for one class of dg-algebras, the resulting computation will generate a complete A ∞-algebra structure after a finite amount of computational work.

2012 ◽  
Vol 149 (3) ◽  
pp. 430-480 ◽  
Author(s):  
John Francis

AbstractIn this work, we study the deformation theory of${\mathcal {E}}_n$-rings and the${\mathcal {E}}_n$analogue of the tangent complex, or topological André–Quillen cohomology. We prove a generalization of a conjecture of Kontsevich, that there is a fiber sequence$A[n-1] \rightarrow T_A\rightarrow {\mathrm {HH}}^*_{{\mathcal {E}}_{n}}\!(A)[n]$, relating the${\mathcal {E}}_n$-tangent complex and${\mathcal {E}}_n$-Hochschild cohomology of an${\mathcal {E}}_n$-ring$A$. We give two proofs: the first is direct, reducing the problem to certain stable splittings of configuration spaces of punctured Euclidean spaces; the second is more conceptual, where we identify the sequence as the Lie algebras of a fiber sequence of derived algebraic groups,$B^{n-1}A^\times \rightarrow {\mathrm {Aut}}_A\rightarrow {\mathrm {Aut}}_{{\mathfrak B}^n\!A}$. Here${\mathfrak B}^n\!A$is an enriched$(\infty ,n)$-category constructed from$A$, and${\mathcal {E}}_n$-Hochschild cohomology is realized as the infinitesimal automorphisms of${\mathfrak B}^n\!A$. These groups are associated to moduli problems in${\mathcal {E}}_{n+1}$-geometry, a less commutative form of derived algebraic geometry, in the sense of the work of Toën and Vezzosi and the work of Lurie. Applying techniques of Koszul duality, this sequence consequently attains a nonunital${\mathcal {E}}_{n+1}$-algebra structure; in particular, the shifted tangent complex$T_A[-n]$is a nonunital${\mathcal {E}}_{n+1}$-algebra. The${\mathcal {E}}_{n+1}$-algebra structure of this sequence extends the previously known${\mathcal {E}}_{n+1}$-algebra structure on${\mathrm {HH}}^*_{{\mathcal {E}}_{n}}\!(A)$, given in the higher Deligne conjecture. In order to establish this moduli-theoretic interpretation, we make extensive use of factorization homology, a homology theory for framed$n$-manifolds with coefficients given by${\mathcal {E}}_n$-algebras, constructed as a topological analogue of Beilinson and Drinfeld’s chiral homology. We give a separate exposition of this theory, developing the necessary results used in our proofs.


Author(s):  
Keller VandeBogert

The big from small construction was introduced by Kustin and Miller in [A. Kustin and M. Miller, Constructing big Gorenstein ideals from small ones, J. Algebra 85 (1983) 303–322] and can be used to construct resolutions of tightly double linked Gorenstein ideals. In this paper, we expand on the DG-algebra techniques introduced in [A. Kustin, Use DG methods to build a matrix factorization, preprint (2019), arXiv:1905.11435 ] and construct a DG [Formula: see text]-algebra structure on the length [Formula: see text] big from small construction. The techniques employed involve the construction of a morphism from a Tate-like complex to an acyclic DG [Formula: see text]-algebra exhibiting Poincaré duality. This induces homomorphisms which, after suitable modifications, satisfy a list of identities that end up perfectly encapsulating the required associativity and DG axioms of the desired product structure for the big from small construction.


2019 ◽  
Vol 155 (11) ◽  
pp. 2150-2179
Author(s):  
Vinicius Bouça ◽  
S. Hamid Hassanzadeh

We describe generators of disguised residual intersections in any commutative Noetherian ring. It is shown that, over Cohen–Macaulay rings, the disguised residual intersections and algebraic residual intersections are the same, for ideals with sliding depth. This coincidence provides structural results for algebraic residual intersections in a quite general setting. It is shown how the DG-algebra structure of Koszul homologies affects the determination of generators of residual intersections. It is shown that the Buchsbaum–Eisenbud family of complexes can be derived from the Koszul–Čech spectral sequence. This interpretation of Buchsbaum–Eisenbud families has a crucial rule to establish the above results.


2018 ◽  
Vol 17 (05) ◽  
pp. 1850090 ◽  
Author(s):  
X.-F. Mao ◽  
J.-W. He ◽  
M. Liu ◽  
J.-F. Xie

In this paper, we introduce and study differential graded (DG) down–up algebras. In brief, a DG down–up algebra [Formula: see text] is a connected cochain DG algebra such that its underlying graded algebra [Formula: see text] is a graded down–up algebra. We describe all possible differential structures on Noetherian DG down–up algebras. For those Noetherian DG down-up algebras with nonzero differential, we compute their DG automorphism groups; study their isomorphism problems; and show that they are all Calabi–Yau DG algebras.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katrina R. Quinn ◽  
Lenka Seillier ◽  
Daniel A. Butts ◽  
Hendrikje Nienborg

AbstractFeedback in the brain is thought to convey contextual information that underlies our flexibility to perform different tasks. Empirical and computational work on the visual system suggests this is achieved by targeting task-relevant neuronal subpopulations. We combine two tasks, each resulting in selective modulation by feedback, to test whether the feedback reflected the combination of both selectivities. We used visual feature-discrimination specified at one of two possible locations and uncoupled the decision formation from motor plans to report it, while recording in macaque mid-level visual areas. Here we show that although the behavior is spatially selective, using only task-relevant information, modulation by decision-related feedback is spatially unselective. Population responses reveal similar stimulus-choice alignments irrespective of stimulus relevance. The results suggest a common mechanism across tasks, independent of the spatial selectivity these tasks demand. This may reflect biological constraints and facilitate generalization across tasks. Our findings also support a previously hypothesized link between feature-based attention and decision-related activity.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Pierre-Philippe Dechant

AbstractRecent work has shown that every 3D root system allows the construction of a corresponding 4D root system via an ‘induction theorem’. In this paper, we look at the icosahedral case of $$H_3\rightarrow H_4$$ H 3 → H 4 in detail and perform the calculations explicitly. Clifford algebra is used to perform group theoretic calculations based on the versor theorem and the Cartan–Dieudonné theorem, giving a simple construction of the $${\mathrm {Pin}}$$ Pin and $${\mathrm {Spin}}$$ Spin covers. Using this connection with $$H_3$$ H 3 via the induction theorem sheds light on geometric aspects of the $$H_4$$ H 4 root system (the 600-cell) as well as other related polytopes and their symmetries, such as the famous Grand Antiprism and the snub 24-cell. The uniform construction of root systems from 3D and the uniform procedure of splitting root systems with respect to subrootsystems into separate invariant sets allows further systematic insight into the underlying geometry. All calculations are performed in the even subalgebra of $${\mathrm {Cl}}(3)$$ Cl ( 3 ) , including the construction of the Coxeter plane, which is used for visualising the complementary pairs of invariant polytopes, and are shared as supplementary computational work sheets. This approach therefore constitutes a more systematic and general way of performing calculations concerning groups, in particular reflection groups and root systems, in a Clifford algebraic framework.


2021 ◽  
Vol 19 (1) ◽  
pp. 706-723
Author(s):  
Yuri V. Muranov ◽  
Anna Szczepkowska

Abstract In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Seyyedeh Roodabeh Moosavi Noori ◽  
Nasir Taghizadeh

AbstractIn this study, a hybrid technique for improving the differential transform method (DTM), namely the modified differential transform method (MDTM) expressed as a combination of the differential transform method, Laplace transforms, and the Padé approximant (LPDTM) is employed for the first time to ascertain exact solutions of linear and nonlinear pantograph type of differential and Volterra integro-differential equations (DEs and VIDEs) with proportional delays. The advantage of this method is its simple and trusty procedure, it solves the equations straightforward and directly without requiring large computational work, perturbations or linearization, and enlarges the domain of convergence, and leads to the exact solution. Also, to validate the reliability and efficiency of the method, some examples and numerical results are provided.


Author(s):  
Mohammad Ramezani

AbstractThe main propose of this paper is presenting an efficient numerical scheme to solve WSGD scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation. The proposed method is based on fractional B-spline basics in collocation method which involve Caputo-type fractional derivatives for $$0 < \alpha < 1$$ 0 < α < 1 . The most significant privilege of proposed method is efficient and quite accurate and it requires relatively less computational work. The solution of consideration problem is transmute to the solution of the linear system of algebraic equations which can be solved by a suitable numerical method. The finally, several numerical WSGD Scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document