Calcium Imaging in Pluripotent Stem Cell-Derived Cardiac Myocytes

Author(s):  
Anna Walter ◽  
Tomo Šarić ◽  
Jürgen Hescheler ◽  
Symeon Papadopoulos
2019 ◽  
Vol 116 (3) ◽  
pp. 671-685 ◽  
Author(s):  
Xi Lou ◽  
Meng Zhao ◽  
Chengming Fan ◽  
Vladimir G Fast ◽  
Mani T Valarmathi ◽  
...  

Abstract Aims In regenerative medicine, cellular cardiomyoplasty is one of the promising options for treating myocardial infarction (MI); however, the efficacy of such treatment has shown to be limited due to poor survival and/or functional integration of implanted cells. Within the heart, the adhesion between cardiac myocytes (CMs) is mediated by N-cadherin (CDH2) and is critical for the heart to function as an electromechanical syncytium. In this study, we have investigated whether the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) can be enhanced through CDH2 overexpression. Methods and results CDH2-hiPSC-CMs and control wild-type (WT)-hiPSC-CMs were cultured in myogenic differentiation medium for 28 days. Using a mouse MI model, the cell survival/engraftment rate, infarct size, and cardiac functions were evaluated post-MI, at Day 7 or Day 28. In vitro, conduction velocities were significantly greater in CDH2-hiPSC-CMs than in WT-hiPSC-CMs. While, in vivo, measurements of cardiac functions: left ventricular (LV) ejection fraction, reduction in infarct size, and the cell engraftment rate were significantly higher in CDH2-hiPSC-CMs treated MI group than in WT-hiPSC-CMs treated MI group. Mechanistically, paracrine activation of ERK signal transduction pathway by CDH2-hiPSC-CMs, significantly induced neo-vasculogenesis, resulting in a higher survival of implanted cells. Conclusion Collectively, these data suggest that CDH2 overexpression enhances not only the survival/engraftment of cultured CDH2-hiPSC-CMs, but also the functional integration of these cells, consequently, the augmentation of the reparative properties of implanted CDH2-hiPSC-CMs in the failing hearts.


2017 ◽  
Vol 121 (6) ◽  
Author(s):  
Atsushi Tachibana ◽  
Michelle R. Santoso ◽  
Morteza Mahmoudi ◽  
Praveen Shukla ◽  
Lei Wang ◽  
...  

Rationale: Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. Objective: To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. Methods and Results: Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. Conclusions: This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through their differential paracrine effects.


2013 ◽  
Vol 4 (4) ◽  
pp. 260
Author(s):  
M. Saarnilehto ◽  
M. Pekkanen-Mattila ◽  
K. Aalto-Setälä ◽  
O. Silvennoinen ◽  
A. Koivisto

AbstractAimsAim of the study was to characterize functional ion channel and GPCR responses by using selective pharmacological tools and intracellular calcium imaging from human inducible pluripotent stem cell-derived sensory neurons.MethodsSensory neurons were generated from human keratinocytes that were reprogrammed to inducible pluripotent stem cells by using standard Yamanaka factors. Inducible pluripotent stem cells were differentiated into sensory neurons by using 2 differentiation protocols (small molecule and PA6 co-culture). Sensory neurons were loaded with intracellular calcium dye Fluo-4. Single-cell calcium imaging was performed with Photometrics Evolve EM-CCD camera at physiological temperature. Cells were perfused with a Ringer solution at 2–3 ml/min into which pharmacological compounds were dissolved. Data was analyzed with Till Photonics Offline Analysis program.ResultsMost of the results were obtained from PA6 differentiated neurons. 50 s application of 50 mM KCl solution was used as diagnostic tool to activate voltage-gated calcium channels and thereby evoke intracellular calcium elevation. Functional ASIC, NMDA, kainate and TRPA1 ion channels were present in a subset of sensory neurons. Majority of sensory neurons showed robust responses to purinergic stimulation with ATP and histaminergic stimulation with histamine, but not to subtype selective histamine H1, H2 or H4 stimulation suggesting the presence of H3 receptor subtype All cells responded strongly to protease-activated receptor stimulation with a low dose of trypsin. Interestingly, at single-cell level notable heterogeneity of ion channel and GPCR responses was observed.ConclusionsOur results suggest that iPS-derived sensory neurons will be valuable in further pharmacological studies as well as sensory neuropathy disease modeling.


2016 ◽  
Vol 110 (3) ◽  
pp. 111a
Author(s):  
Chad R. Frasier ◽  
Helen Zhang ◽  
James Offord ◽  
David S. Auerbach ◽  
Jack M. Paren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document