geometrical constraints
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 88)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Uluhan Kaya ◽  
Kamesh Subbarao

Abstract In this paper, a momentum-preserving integration scheme is implemented for the simulation of single and cooperative multi-rotors with a flexible-cable suspended payload by employing a Lie group based variational integrator (VI), which provides the preservation of the configuration manifold and geometrical constraints. Due to the desired properties of the implemented VI method, e.g. sypmlecticity, momentum preservation, and the exact fulfillment of the constraints, exponentially long-term numerical stability and good energy behavior are obtained for more accurate simulations of aforementioned systems. The effectiveness of Lie group VI method with the corresponding discrete systems are demonstrated by comparing the simulation results of two example scenarios for the single and cooperative systems in terms of the preserved quantities and constraints, where a conventional fixed-step Runge-Kutta 4 (RK4) and Variable-Step integrators are utilized for the simulation of continuous-time models. It is shown that the implemented VI method successfully performs the simulations with a long-time stable behavior by preserving invariants of the system and the geometrical constraints, whereas the simulation of continuous-time models by RK4 and Variable Step are incapable of satisfying these desired properties, which inherently results in divergent and unstable behavior in simulations.


2021 ◽  
Author(s):  
Roman G Novikov ◽  
Vladimir Sivkin

Abstract We give new formulas for finding the complex (phased) scattering amplitude at fixed frequency and angles from absolute values of the scattering wave function at several points $x_1,..., x_m$. In dimension $d\geq 2$, for $m>2$, we significantly improve previous results in the following two respects. First, geometrical constraints on the points needed in previous results are significantly simplified. Essentially, the measurement points $x_j$ are assumed to be on a ray from the origin with fixed distance $\tau=|x_{j+1}- x_j|$, and high order convergence (linearly related to $m$) is achieved as the points move to infinity with fixed $\tau$. Second, our new asymptotic reconstruction formulas are significantly simpler than previous ones. In particular, we continue studies going back to [Novikov, Bull. Sci. Math. 139(8), 923-936, 2015].


2021 ◽  
Author(s):  
Ryosuke Tanaka ◽  
Damon A. Clark

Visual motion provides rich geometrical cues about the three-dimensional configuration the world. However, how brains decode the spatial information carried by motion signals remains poorly understood. Here, we study a collision avoidance behavior in Drosophila as a simple model of motion-based spatial vision. With simulations and psychophysics, we demonstrate that walking Drosophila exhibit a pattern of slowing to avoid collisions by exploiting the geometry of positional changes of objects on near-collision courses. This behavior requires the visual neuron LPLC1, whose tuning mirrors the behavior and whose activity drives slowing. LPLC1 pools inputs from object- and motion-detectors, and spatially biased inhibition tunes it to the geometry of collisions. Connectomic analyses identified circuitry downstream of LPLC1 that faithfully inherits its response properties. Overall, our results reveal how a small neural circuit solves a specific spatial vision task by combining distinct visual features to exploit universal geometrical constraints of the visual world.


Author(s):  
Antoine Dupuis ◽  
Jean-Jacques Pesce ◽  
Jean-Baptiste Marijon ◽  
Stéphane Roux ◽  
Gilles Régnier

An original methodology using Digital Image Correlation (DIC) has been designed to precisely measure full-field shrinkages of injection molded polymer plates and then to give the opportunity to compare quantitatively extensive numerical simulations to experiments. The principle of the methodology is based on the full-field strain determination between a reference image of the mold and that of injection-molded parts, which are 275 × 100 × 2.2 mm3 plates. To allow for DIC calculation, 50 µm-depth engravings were machined by electro-discharge process at the surface of the mold. The result of the analysis is a 2D full-field shrinkage map over the whole plate surface (i.e. flow and transverse), with a standard deviation of 0.03%. The marking density has been shown to have a roughly linear influence on the precision of shrinkage measurement. This methodology allows the quantification of the effect of several injection parameters on in-plane shrinkage fields: holding pressure, injection flow rate and direction, geometry of injection gates, or geometrical constraints. Once the best set of parameters of material constitutive laws is identified for the simulation of polymer plates, the simulation procedure is ready to be applied on more complex 3D geometries.


2021 ◽  
Author(s):  
Yvo de Jong

<div><div><div><p>This paper presents a uniform ray description of electromagnetic wave scattering by locally periodic metasurfaces of polygonal shape. The model is derived by asymptotically evaluating the critical-point contributions of a physical optics scattering integral. It is valid for metasurfaces whose bulk scattering coefficients are periodic functions of a phase parameter which, in turn, is a continuous and smooth function of surface coordinates. The scattered field is expressed in terms of reflected, transmitted and diffracted rays that do not generally obey conventional geometrical constraints (i.e., Snell’s law and the Keller cone). An iterative technique is presented to determine the locations of critical points on one or multiple interacting metasurfaces. Numerical results demonstrating the utility and accuracy of the asymptotic physical optics model are also provided.</p></div></div></div>


2021 ◽  
Author(s):  
Yvo de Jong

<div><div><div><p>This paper presents a uniform ray description of electromagnetic wave scattering by locally periodic metasurfaces of polygonal shape. The model is derived by asymptotically evaluating the critical-point contributions of a physical optics scattering integral. It is valid for metasurfaces whose bulk scattering coefficients are periodic functions of a phase parameter which, in turn, is a continuous and smooth function of surface coordinates. The scattered field is expressed in terms of reflected, transmitted and diffracted rays that do not generally obey conventional geometrical constraints (i.e., Snell’s law and the Keller cone). An iterative technique is presented to determine the locations of critical points on one or multiple interacting metasurfaces. Numerical results demonstrating the utility and accuracy of the asymptotic physical optics model are also provided.</p></div></div></div>


2021 ◽  
Author(s):  
Xiao LI ◽  
Jialin SHI ◽  
Ziqing GAO ◽  
Jian XU ◽  
Shujing WANG ◽  
...  

Abstract Circulating tumor cells (CTCs) survive in the bloodstream, seed, and invade to foster tumor metastasis. The arrest of CTCs is favored by permissive flow forces and geometrical constraints. Through the use of high-throughput microfluidic devices designed to mimic capillary-sized vessels, we applied different pressure differences to cancer cells and recorded cell traverse-vessel behaviors. Our results showed that cancer cells would transform from Newtonian droplet state to adhesion/migration state when cancer cells traverse in the artificial vessels. To explain these phenomena, a modified Newtonian droplet model was also proposed. These phenomena and the modified model may reveal how the CTCs in the blood seed and invade in the vessels under suitable conditions.


2021 ◽  
Vol 13 (16) ◽  
pp. 3205
Author(s):  
Rozhin Moftizadeh ◽  
Sören Vogel ◽  
Ingo Neumann ◽  
Johannes Bureick ◽  
Hamza Alkhatib

Georeferencing a kinematic Multi-Sensor-System (MSS) within crowded areas, such as inner-cities, is a challenging task that should be conducted in the most reliable way possible. In such areas, the Global Navigation Satellite System (GNSS) data either contain inevitable errors or are not continuously available. Regardless of the environmental conditions, an Inertial Measurement Unit (IMU) is always subject to drifting, and therefore it cannot be fully trusted over time. Consequently, suitable filtering techniques are required that can compensate for such possible deficits and subsequently improve the georeferencing results. Sometimes it is also possible to improve the filter quality by engaging additional complementary information. This information could be taken from the surrounding environment of the MSS, which usually appears in the form of geometrical constraints. Since it is possible to have a high amount of such information in an environment of interest, their consideration could lead to an inefficient filtering procedure. Hence, suitable methodologies are necessary to be extended to the filtering framework to increase the efficiency while preserving the filter quality. In the current paper, we propose a Dual State Iterated Extended Kalman Filter (DSIEKF) that can efficiently georeference a MSS by taking into account additional geometrical information. The proposed methodology is based on implicit measurement equations and nonlinear geometrical constraints, which are applied to a real case scenario to further evaluate its performance.


2021 ◽  
Vol 2 (3) ◽  
pp. 1-21
Author(s):  
Deke Guo ◽  
Xiaoqiang Teng ◽  
Yulan Guo ◽  
Xiaolei Zhou ◽  
Zhong Liu

Due to the rapid development of indoor location-based services, automatically deriving an indoor semantic floorplan becomes a highly promising technique for ubiquitous applications. To make an indoor semantic floorplan fully practical, it is essential to handle the dynamics of semantic information. Despite several methods proposed for automatic construction and semantic labeling of indoor floorplans, this problem has not been well studied and remains open. In this article, we present a system called SiFi to provide accurate and automatic self-updating service. It updates semantics with instant videos acquired by mobile devices in indoor scenes. First, a crowdsourced-based task model is designed to attract users to contribute semantic-rich videos. Second, we use the maximum likelihood estimation method to solve the text inferring problem as the sequential relationship of texts provides additional geometrical constraints. Finally, we formulate the semantic update as an inference problem to accurately label semantics at correct locations on the indoor floorplans. Extensive experiments have been conducted across 9 weeks in a shopping mall with more than 250 stores. Experimental results show that SiFi achieves 84.5% accuracy of semantic update.


Sign in / Sign up

Export Citation Format

Share Document