scholarly journals Electronic Expression of I K1 in Human Induced Pluripotent Stem Cell Derived Cardiac Myocytes (hiPSCD-CM) Alters Action Potential Response to Channel Block

2017 ◽  
Vol 112 (3) ◽  
pp. 235a
Author(s):  
Mark Nowak ◽  
Sanjot Singh ◽  
Aidan Coon ◽  
Shimin Wang ◽  
Glenna Bett ◽  
...  
2019 ◽  
Vol 116 (3) ◽  
pp. 671-685 ◽  
Author(s):  
Xi Lou ◽  
Meng Zhao ◽  
Chengming Fan ◽  
Vladimir G Fast ◽  
Mani T Valarmathi ◽  
...  

Abstract Aims In regenerative medicine, cellular cardiomyoplasty is one of the promising options for treating myocardial infarction (MI); however, the efficacy of such treatment has shown to be limited due to poor survival and/or functional integration of implanted cells. Within the heart, the adhesion between cardiac myocytes (CMs) is mediated by N-cadherin (CDH2) and is critical for the heart to function as an electromechanical syncytium. In this study, we have investigated whether the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) can be enhanced through CDH2 overexpression. Methods and results CDH2-hiPSC-CMs and control wild-type (WT)-hiPSC-CMs were cultured in myogenic differentiation medium for 28 days. Using a mouse MI model, the cell survival/engraftment rate, infarct size, and cardiac functions were evaluated post-MI, at Day 7 or Day 28. In vitro, conduction velocities were significantly greater in CDH2-hiPSC-CMs than in WT-hiPSC-CMs. While, in vivo, measurements of cardiac functions: left ventricular (LV) ejection fraction, reduction in infarct size, and the cell engraftment rate were significantly higher in CDH2-hiPSC-CMs treated MI group than in WT-hiPSC-CMs treated MI group. Mechanistically, paracrine activation of ERK signal transduction pathway by CDH2-hiPSC-CMs, significantly induced neo-vasculogenesis, resulting in a higher survival of implanted cells. Conclusion Collectively, these data suggest that CDH2 overexpression enhances not only the survival/engraftment of cultured CDH2-hiPSC-CMs, but also the functional integration of these cells, consequently, the augmentation of the reparative properties of implanted CDH2-hiPSC-CMs in the failing hearts.


2021 ◽  
Vol 2 (4) ◽  
pp. 100859
Author(s):  
Joe Z. Zhang ◽  
Shane Rui Zhao ◽  
Chengyi Tu ◽  
Paul Pang ◽  
Mao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document