scholarly journals An introduction to a process engineering approach and a case study illustration of its utility

1995 ◽  
pp. 248-260
Author(s):  
Peter Kawalek
Dependability ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 3-12
Author(s):  
Yu. P. Pokhabov

Aim. To consider matters of dependability of highly critical non-recoverable space products with short operation life, whose failures are primarily caused by design and process engineering errors, manufacturing defects in the course of single-unit or small-scale production, as well as to define the methodological approach to ensuring the required reliability.Methods. Options were analysed for improving the dependability of entities with short operation life using the case study of single-use mechanical devices and the statistical approaches of the modern dependability theory, special methods of dependability of actuated mechanical assemblies, FMEA, Stage-Gate and ground experiments on single workout equivalents for each type of effect. Results. It was concluded that additional procedures need to be conducted for the purpose of predicting, mitigation and (or) eliminating possible failures as part of the design process using exactly the same approaches that cause failures, i.e., those of design and process engineering. The engineering approaches to dependability are based on early identification of possible causes of failures, which requires a qualified and systemic analysis aimed at identifying the functionality, performance and dependability of an entity, taking into account critical output parameters and probabilistic indicators that affect the performance of the required functions with the allowable probability of failure. The solution is found using a generalized parametric model of operation and design engineering analysis of dependability.Conclusion. For highly critical non-recoverable space entities with short operation life, the reliability requirements should be considered primarily in terms financial, economic, safetyrelated and reputational risks associated with the loss of spacecraft. From a design engineer’s standpoint, the number of nines after the decimal point (rounded to a smaller number of nines for increased confidence) should be seen as the indicator for the application of the appropriate approaches to ensuring the required reliability at the stage of product design. In case of two nines after the decimal point it is quite acceptable to use analytical and experimental verification techniques common to the aerospace industry, i.e., dependability calculations using the statistical methods of the modern dependability theory and performance indicators, FMEA and Stage-Gate, ground experiments on single workout equivalents for each type of effect. As the required number of nines grows, it is advisable to also use early failure prevention methods, one of which is the design engineering analysis of dependability that enables designers to adopt substantiated design solutions on the basis of engineering disciplines and design and process engineering methods of ensuring quality and dependability. The choice of either of the above dependability strategies is determined solely by the developer’s awareness and understanding of potential hazards, which allows managing the risk of potential rare failures or reasonably refusing to do so.


Author(s):  
W Ernst Eder

Students learning design engineering at times need a good example of procedure for novel design engineering. The systematic heuristic-strategic use of a theory to guide the design process – Engineering Design Science – and the methodical design process followed in this case study is only necessary in limited situations. The full procedure should be learned, such that the student can select appropriate parts for other applications. Creativity is usually characterized by a wide search for solutions, especially those that are innovative. The search can be helped by this systematic and methodical approach. This case example is presented to show application of the recommended method, and the expected scope of the output, with emphasis on the stages of conceptualizing. The case follows a novel design problem of a mechanism to open and close the bow thruster covers for the Caravan Stage Barge.


Author(s):  
Alessandro Massaro ◽  
Angelo Galiano ◽  
Antonio Mustich ◽  
Daniele Convertini ◽  
Vincenzo Maritati ◽  
...  

2011 ◽  
pp. 1-10
Author(s):  
Antonio Drommi

This chapter will address the issues of interface design and incorporation of human behavior factors into the design process. The traditional process engineering approach to software development embeds interface design as a task component. However, the interface design process has grown as a discipline and is beyond the single process within a larger scheme that may be lost on the priority list. The functionality and specifications for software developers tend to focus on the project and less on the product. In addition, bridging the gap of the design process to include global elements of the software is an issue for products that are internationally distributed. It is something that the computer industry must address and has been historically unsuccessful at doing. Incorporating human interactivity and screen design requires an understanding of the user and their behavior that is not part of the traditional tasks of most designers and programmers. This chapter presents the importance of human interactivity and interface design as an embedded process.


Sign in / Sign up

Export Citation Format

Share Document