scholarly journals Volume Visualization of Water Quality Data in Hamilton Harbour, Lake Ontario

1996 ◽  
pp. 278-286
Author(s):  
Efraim Halfon
2020 ◽  
Author(s):  
Youyue Sun ◽  
Yu Li ◽  
Jinhui Jeanne Huang ◽  
Edward McBean

<p>Chlorophyll-a (CHLA) and total phosphorous (TP) are key indicators for water quality and eutrophication in lakes. It would be a great help to water management if CHLA and TP could be predicted with certain leading time to ensure water quality control measures could be implemented. Since eutrophication is the results of a complex bio-chemical-physical processes involving in pH, temperature, dissolved oxygen (DO) and many other water quality parameters, the discover of their internal correlations and relationships may help in the predication of CHLA and TP. In this study, a long term (20 years) water quality data including CHLA, TP, total nitrogen (TN), turbidity (TB), sulphate, pH, and DO collected in Lake Ontario by the Environment and Climate Change Canada agency were obtained. These data were analyzed by using a group of Neural Network (NN) models and ensemble strategies were evaluated in this study. One particular ensemble of the following NN models, namely, back propagation, Kohonen, probabilistic neural network (PNN), generalized regression neural network (GRNN), or group method of data handling (GMDH) were selected which has higher goodness of fit and shows robustness in model validation. Comparing with one single NN model, the ensemble model could provide more accurate predictions of CHLA and TP concentration in Lake Ontario and the predication of CHLA and TP would be helpful in lake management, eco-restoration and public health risk assessment.</p>


2000 ◽  
Author(s):  
Kathryn M. Conko ◽  
Margaret M. Kennedy ◽  
Karen C. Rice

Sign in / Sign up

Export Citation Format

Share Document