Prediction of Chlorophyll and Phosphorus in Lake Ontario by Ensemble of Neural Network Models

Author(s):  
Youyue Sun ◽  
Yu Li ◽  
Jinhui Jeanne Huang ◽  
Edward McBean

<p>Chlorophyll-a (CHLA) and total phosphorous (TP) are key indicators for water quality and eutrophication in lakes. It would be a great help to water management if CHLA and TP could be predicted with certain leading time to ensure water quality control measures could be implemented. Since eutrophication is the results of a complex bio-chemical-physical processes involving in pH, temperature, dissolved oxygen (DO) and many other water quality parameters, the discover of their internal correlations and relationships may help in the predication of CHLA and TP. In this study, a long term (20 years) water quality data including CHLA, TP, total nitrogen (TN), turbidity (TB), sulphate, pH, and DO collected in Lake Ontario by the Environment and Climate Change Canada agency were obtained. These data were analyzed by using a group of Neural Network (NN) models and ensemble strategies were evaluated in this study. One particular ensemble of the following NN models, namely, back propagation, Kohonen, probabilistic neural network (PNN), generalized regression neural network (GRNN), or group method of data handling (GMDH) were selected which has higher goodness of fit and shows robustness in model validation. Comparing with one single NN model, the ensemble model could provide more accurate predictions of CHLA and TP concentration in Lake Ontario and the predication of CHLA and TP would be helpful in lake management, eco-restoration and public health risk assessment.</p>




Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Khurshid Jahan ◽  
Soni M. Pradhanang

Road salts in stormwater runoff, from both urban and suburban areas, are of concern to many. Chloride-based deicers [i.e., sodium chloride (NaCl), magnesium chloride (MgCl2), and calcium chloride (CaCl2)], dissolve in runoff, travel downstream in the aqueous phase, percolate into soils, and leach into groundwater. In this study, data obtained from stormwater runoff events were used to predict chloride concentrations and seasonal impacts at different sites within a suburban watershed. Water quality data for 42 rainfall events (2016–2019) greater than 12.7 mm (0.5 inches) were used. An artificial neural network (ANN) model was developed, using measured rainfall volume, turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), sodium, chloride, and total nitrate concentrations. Water quality data were trained using the Levenberg-Marquardt back-propagation algorithm. The model was then applied to six different sites. The new ANN model proved accurate in predicting values. This study illustrates that road salt and deicers are the prime cause of high chloride concentrations in runoff during winter and spring, threatening the aquatic environment.



2003 ◽  
Vol 47 (7-8) ◽  
pp. 319-325 ◽  
Author(s):  
S.R. Ha ◽  
S.Y. Park ◽  
D.H. Park

Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.



2021 ◽  
Vol 18 (6) ◽  
pp. 7561-7579
Author(s):  
Huanhai Yang ◽  
◽  
Shue Liu ◽  
◽  

<abstract><p>In the field of intensive aquaculture, the deterioration of water quality is one of the main factors restricting the normal growth of aquatic products. Predicting water quality in real time constitutes the theoretical basis for the evaluation, planning and intelligent regulation of the aquaculture environment. Based on the design principles of decomposition, recombination and integration, this paper constructs a multiscale aquaculture water quality prediction model. First, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method is used to decompose the different water quality variables at different time scales step by step to generate a series of intrinsic mode function (IMF) components with the same characteristic scale. Then, the sample entropy of each IMF component is calculated, the components with similar sample entropies are combined, and the original data are recombined into several subsequences through the above operations. In this paper, a prediction model based on a long short-term memory (LSTM) neural network is constructed to predict each recombination subsequence, and the Adam optimization algorithm is used to continuously update the weight of neural network to train and optimize the prediction performance. Finally, the predicted value of each subsequence is superimposed to predict the original water quality data. The dissolved oxygen and pH data of an aquaculture base were collected for prediction experiments, the results of which show that the proposed model has a high prediction accuracy and strong generalization performance.</p></abstract>



2019 ◽  
Vol 55 (1) ◽  
pp. 106-118 ◽  
Author(s):  
Senlin Zhu ◽  
Salim Heddam

Abstract In the present study, two non-linear mathematical modelling approaches, namely, extreme learning machine (ELM) and multilayer perceptron neural network (MLPNN) were developed to predict daily dissolved oxygen (DO) concentrations. Water quality data from four urban rivers in the backwater zone of the Three Gorges Reservoir, China were used. The water quality data selected consisted of daily observed water temperature, pH, permanganate index, ammonia nitrogen, electrical conductivity, chemical oxygen demand, total nitrogen, total phosphorus and DO. The accuracy of the ELM model was compared with the standard MLPNN using several error statistics such as root mean squared error, mean absolute error, the coefficient of correlation and the Willmott index of agreement. Results showed that the ELM and MLPNN models perform well for the Wubu River, acceptably for the Yipin River and moderately for the Huaxi River, while poor model performance was obtained at the Tributary of Huaxi River. Model performance is negatively correlated with pollution level in each river. The MLPNN model slightly outperforms the ELM model in DO prediction. Overall, it can be concluded that MLPNN and ELM models can be applied for DO prediction in low-impacted rivers, while they may not be appropriate for DO modelling for highly polluted rivers. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).



2019 ◽  
Vol 7 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Oskar Natan ◽  
Agus Indra Gunawan ◽  
Bima Sena Bayu Dewantara

Maintaining the water quality of a pond is one of the main issues on aquaculture management. Water quality represents the condition of a pond based on several water parameters such as dissolved oxygen (DO), temperature, pH, and salinity. All of these parameters need to be strictly supervised since it affects the life-sustainability of cultivated organisms. However, DO is said to be the main parameter since it affects the growth and survival rate of the shrimp. Therefore, a water quality control and monitoring system is needed to maintain water parameters at acceptable value. The system is developed on a mini-PC and microcontroller which are integrated with several sensors and actuator forming an embedded system. Then, this system is used to collect water quality data that is consisting of several water parameters and control the DO as the main parameter. In accordance with the stability needs against the sensitive environment, a fuzzy logic-based controller is developed to maintain the DO rate in the water. This system is also equipped with SIM800 module to notice the farmer by SMS, built-in wifi module for web-based data logging, and improved with Android-based graphical user interface (GUI) to perform user-friendly monitoring. From the experiment results, a fuzzy controller that is attached to the system can control the DO at the acceptable value of 6 ppm. The controller is said to have high robustness since its deviation for long-time use is only 0.12 ppm. Another test shows that the controller is able to overcome the given disturbance and easily adapt when the DO’s set point is changed.  Finally, the system is able to collect and store the data into cloud storage periodically and show the data on a website.



Author(s):  
Lina Rose ◽  
X. Anitha Mary ◽  
C. Karthik

Abstract Water consumed is stored in several water bodies in and around us, out of which dams accommodate a major portion of water. The quantity and quality monitoring of water in Dams is troublesome due to its large surface area and high depths. Though groundwater resources are the primary water source in India, Dams plays a vital role in water distribution and storage network. Central Water Commission in India has identified more than 5,000 dams of which a major portion is persistently consumed by the rural and urban population for drinking and irrigation. The water quality of these reservoirs is of serious concern as it would not only affect the socio-economic status of the nation but the aquatic systems as well. Water quality control and management are vital for delivering clean water supply to the common society. Because of their size, collecting, assessing, and managing a vast volume of water quality data is critical. Water quality data is primarily obtained through manual field sampling; however, real-time sensor monitoring is increasingly being used for more efficient data collection. The literature depicts that the methodsinvolving remote sensing and image processing of water quality analysis consume time, require sample collection at various depths, analysis of collected samples, and manual interpretations. The objective of this study is to propose a novel cost-effective method to monitor water quality devoid of considerable human intervention. The sensor-based online monitoring aids in assessing the sample with limited technology, at various depths of water in the dam to analyze turbidity which gives the major indication of pure water. The quality analysis of the dam water is worthy if the water is assessed at the distribution end before consumption. Hence, to enhance the water management system, other quality parameters like pH, conductivity, temperature are sensed and monitored in the distribution pipeline. The unstable pH can alter the chemical and microbiological aspects of water resulting in a variation of other water quality parameters Temperature variations affect the amount of dissolved oxygen in the water bodies which results in unstable quality parameters. The change in dissolved solvents and the ionic concentration alters the electrical conductivity of the water and the increased concentration of salts also results in turbidity. The data from all the sensors are processed by the microcontroller, transmitted, and displayed in a mobile application comprehensible to the layman.



2020 ◽  
Vol 4 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Pawalee Srisuksomwong ◽  
Jeeraporn Pekkoh

Maekuang reservoir is one of the water resources which provides water supply, livestock, and recreational in Chiangmai city, Thailand. The water quality and Microcystis aeruginosa are a severe problem in many reservoirs. M. aeruginosa is the most widespread toxic cyanobacteria in Thailand. Difficulty prediction for planning protects Maekuang reservoirs, the artificial Neural Network (ANN) model is a powerful tool that can be used to machine learning and prediction by observation data. ANN is able to learn from previous data and has been used to predict the value in the future. ANN consists of three layers as input, hidden, and output layer. Water quality data is collected biweekly at Maekuang reservoir (1999-2000). Input data for training, including nutrients (ammonium, nitrate, and phosphorus), Secchi depth, BOD, temperature, conductivity, pH, and output data for testing as Chlorophyll a and M. aeruginosa cells. The model was evaluated using four performances, namely; mean squared error (MSE), root mean square error (RMSE), sum of square error (SSE), and percentage error. It was found that the model prediction agreed with experimental data. C01-C08 scenarios focused on M. aeruginosa bloom prediction, and ANN tested for prediction of Chlorophyll a bloom shown on M01-M09 scenarios. The findings showed, this model has been validated for prediction of Chlorophyll a and shows strong agreement for nitrate, Log cell, and Chlorophyll a. Results indicate that the ANN can be predicted eutrophication indicators during the summer season, and ANN has efficient for providing the new data set and predict the behavior of M. aeruginosa bloom process.



Sign in / Sign up

Export Citation Format

Share Document