scholarly journals Tail Probability of a Gaussian Fluid Queue under Finite Measurement of Input Processes

Author(s):  
Kazutomo Kobayashi ◽  
Yukio Takahashi
Keyword(s):  
1993 ◽  
Vol 151 (2-4) ◽  
pp. 343-363 ◽  
Author(s):  
Young-Il Moon ◽  
Upmanu Lall ◽  
Ken Bosworth

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kolinjivadi Viswanathan Vijayashree ◽  
Atlimuthu Anjuka

This paper deals with the stationary analysis of a fluid queue driven by anM/M/1queueing model subject to Bernoulli-Schedule-Controlled Vacation and Vacation Interruption. The model under consideration can be viewed as a quasi-birth and death process. The governing system of differential difference equations is solved using matrix-geometric method in the Laplacian domain. The resulting solutions are then inverted to obtain an explicit expression for the joint steady state probabilities of the content of the buffer and the state of the background queueing model. Numerical illustrations are added to depict the convergence of the stationary buffer content distribution to one subject to suitable stability conditions.


2015 ◽  
Vol 26 (10) ◽  
pp. 1550119 ◽  
Author(s):  
A. C. P. Rosa ◽  
P. Vaveliuk ◽  
M. A. Moret

The main studies on pitting consist in proposing Markovian stochastic models, based on the statistics of extreme values and focused on growing the depth of wells, especially the deepest one. We show that a non-Markovian model, described by a nonlinear Fokker–Planck (nFP) equation, properly depicts the time evolution of a distribution of depth values of pits that were experimentally obtained. The solution of this equation in a steady-state regime is a q-Gaussian distribution, i.e. a long-tail probability distribution that is the main characteristic of a nonextensive statistical mechanics. The proposed model, that is applied to data from four inspections conducted on a section of a line of regular water service in power water reactor (PWR) nuclear power plants, is in agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document