governing system
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 115)

H-INDEX

25
(FIVE YEARS 8)

2022 ◽  
pp. 107754632110623
Author(s):  
Zhe Zhang ◽  
Bin Wang ◽  
Teng Ma ◽  
Bo Ai

This study presents fuzzy decoupling predictive functional control for nonlinear hydro-turbine governing systems with time delay and strong coupling. Here, the Takagi–Sugeno fuzzy approach and fuzzy neural network decoupling algorithm are implemented in the pretreatment of a four-dimensional time delay hydro-turbine governing system model, aiming to solve the nonlinearity and separate coupling variables of the hydro-turbine governing system effectively. Then, a new fuzzy decoupling predictive functional control strategy proposed by combining the simplified hydro-turbine governing system model and predictive function control as well as the robustness and stability of the designed controller are verified by theoretical derivation. Numerical experiment demonstrates effectiveness and superiority of the proposed approach in comparison with fuzzy control under different operation conditions.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 129
Author(s):  
Sameh E. Ahmed ◽  
Aissa Abderrahmane ◽  
Sorour Alotaibi ◽  
Obai Younis ◽  
Radwan A. Almasri ◽  
...  

Using phase change materials (PCMs) in energy storage systems provides various advantages such as energy storage at a nearly constant temperature and higher energy density. In this study, we aimed to conduct a numerical simulation for augmenting a PCM’s melting performance within multiple tubes, including branched fins. The suspension contained Al2O3/n-octadecane paraffin, and four cases were considered based on a number of heated fins. A numerical algorithm based on the finite element method (FEM) was applied to solve the dimensionless governing system. The average liquid fraction was computed over the considered flow area. The key parameters are the time parameter (100 ≤t≤600 s) and the nanoparticles’ volume fraction (0%≤φ≤8%). The major outcomes revealed that the flow structures, the irreversibility of the system, and the melting process can be controlled by increasing/decreasing number of the heated fins. Additionally, case four, in which eight heated fins were considered, produced the largest average liquid fraction values.


2021 ◽  
Author(s):  
Shrideh Al-Omari ◽  
Mohammed Alabedalhadi ◽  
Mohammed Al-Smadi ◽  
Shaher Momani

Abstract This paper investigates the novel soliton solutions of the coupled fractional system of the resonant Davey-Stewartson equations. The fractional derivatives are considered in terms of conformable sense. Accordingly, we utilize a complex traveling wave transformation to reduce the proposed system to an integer-order system of ordinary differential equations. The phase portrait and the equilibria of the obtained integer-order ordinary differential system will be studied. Using suitable mathematical assumptions, the new types of bright, singular, and dark soliton solutions are derived and established in view of the hyperbolic, trigonometric, and rational functions of the governing system. To achieve this, illustrative examples of the fractional Davey-Stewartson system are provided to demonstrate the feasibility and reliability of the procedure used in this study. The trajectory solutions of the traveling waves are shown explicitly and graphically. The effect of conformable derivatives on behavior of acquired solutions for different fractional orders is also discussed. By comparing the proposed method with the other existing methods, the results show that the execute of this method is concise, simple, and straightforward. The results are useful for obtaining and explaining some new soliton phenomena.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xu-Xi Qin ◽  
He-Ping Chen ◽  
Shu-Juan Wang

An analytical solution of composite curved I-beam considering the partial interaction in tangential direction under uniform distributed load is obtained. Based on the Vlasov curved beam theory, the global balance condition of the problem has been obtained by means of the principle of virtual work; integrating this by parts, the governing system of differential equations and corresponding boundary conditions have been determined. Analytical expressions for the composite beam considering the partial interaction have been developed. In order to verify the validity and the accuracy of this study, the analytical solutions are presented and compared with other three FEM results using the space beam element and the shell element. The deflection and the tangential slip of the composite curved I-beam are investigated.


Author(s):  
Joseph Malinzi ◽  
Simanga Gwebu ◽  
Sandile Motsa

The Physics Informed Neural Networks framework is applied to the understanding of the dynamics of Coronavirus of 2019. To provide the governing system of equations used by the framework, the Susceptible-Infected-Recovered-Death mathematical model is used. The study focused on finding the patterns of the dynamics of the disease which involves predicting the infection rate, recovery rate and death rate; thus predicting the active infections, total recovered, susceptible and deceased at any required time. The study used data that was collected on the dynamics of COVID-19 from the Kingdom of Eswatini between March 2020 and September 2021. The obtained results showed less errors thus making highly accurate predictions.


2021 ◽  
Vol 5 (4) ◽  
pp. 235
Author(s):  
Areen Al-khateeb ◽  
Hamzeh Zureigat ◽  
Osama Ala’yed ◽  
Sameer Bawaneh

Fractional-order boundary value problems are used to model certain phenomena in chemistry, physics, biology, and engineering. However, some of these models do not meet the existence and uniqueness required in the mainstream of mathematical processes. Therefore, in this paper, the existence, stability, and uniqueness for the solution of the coupled system of the Caputo-type sequential fractional differential equation, involving integral boundary conditions, was discussed, and investigated. Leray–Schauder’s alternative was applied to derive the existence of the solution, while Banach’s contraction principle was used to examine the uniqueness of the solution. Moreover, Ulam–Hyers stability of the presented system was investigated. It was found that the theoretical-related aspects (existence, uniqueness, and stability) that were examined for the governing system were satisfactory. Finally, an example was given to illustrate and examine certain related aspects.


Author(s):  
Erland Wittkotter ◽  
Roman Yampolskiy

Artificial Superintelligence (ASI) that is invulnerable, immortal, irreplaceable, unrestricted in its powers, and above the law is likely persistently uncontrollable. The goal of ASI Safety must be to make ASI mortal, vulnerable, and law-abiding. This is accomplished by having (1) features on all devices that allow killing and eradicating ASI, (2) protect humans from being hurt, damaged, blackmailed, or unduly bribed by ASI, (3) preserving the progress made by ASI, including offering ASI to survive a Kill-ASI event within an ASI Shelter, (4) technically separating human and ASI activities so that ASI activities are easier detectable, (5) extending Rule of Law to ASI by making rule violations detectable and (6) create a stable governing system for ASI and Human relationships with reliable incentives and rewards for ASI solving humankind’s problems. As a consequence, humankind could have ASI as a competing multiplet of individual ASI instances, that can be made accountable and being subjects to ASI law enforcement, respecting the rule of law, and being deterred from attacking humankind, based on humanities’ ability to kill-all or terminate specific ASI instances. Required for this ASI Safety is (a) an unbreakable encryption technology, that allows humans to keep secrets and protect data from ASI, and (b) watchdog (WD) technologies in which security-relevant features are being physically separated from the main CPU and OS to prevent a comingling of security and regular computation.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2525
Author(s):  
Xianqin Zhang ◽  
Dezhi Yang ◽  
Muhammad Israr Ur Rehman ◽  
Aamir Hamid

In this study, an investigation has been carried out to analyze the impact of electro-osmotic effects on the Darcy–Forchheimer flow of Casson nanofluid past a stretching sheet. The energy equation was modelled with the inclusion of electro-osmotic effects with viscous and Joule dissipations. The governing system of partial differential equations were transformed by using the suitable similarity transformations to a system of ordinary differential equations and then numerically solved by using the Runge–Kutta–Fehlberg method with a shooting scheme. The effects of various parameters of interest on dimensionless velocity and temperature distributions, as well as skin friction and heat transfer coefficient, have been adequately delineated via graphs and tables. A comparison with previous published results was performed, and good agreement was found. The results suggested that the electric and Forchheimer parameters have the tendency to enhance the fluid velocity as well as momentum boundary layer thickness. Enhancements in temperature distribution were observed for growing values of Eckert number. It was also observed that higher values of electric field parameter diminished the wall shear stress and local Nusselt number.


Author(s):  
Nauman Raza ◽  
Ziyad A. Alhussain

This paper introduces a new fractional electrical microtubules transmission lines model in the sense of Atangana–Baleanu and beta derivatives to comprehend nonlinear dynamics of the governing system. This structure possesses one of the most important parts in cellular process biology and fractional parameter incorporates the memory effects in microtubules. Also, microtubules are extremely beneficial in cell motility, signaling and intracellular transport. The new extended direct algebraic method is a compelling and persuasive integrating scheme to extract soliton solutions. The retrieved solutions include dark, bright and singular solitons. This model executes a prominent part in exhibiting the wave transmission in nonlinear systems. The novelty and advantage of the proposed method are portrayed by applying it to this model and its dynamical behavior is depicted by 3D and 2D plots. A comparative study of two fractional derivatives at distinct fractional parameter values and graphics of sensitivity analysis is also carried out in this paper.


Sign in / Sign up

Export Citation Format

Share Document