scholarly journals Packet Routing with Genetically Programmed Mobile Agents

Author(s):  
Jon Schuringa ◽  
Günter Remsak
Keyword(s):  
2017 ◽  
Vol 2 (1) ◽  
pp. 27-32
Author(s):  
Botchkaryov. A. ◽  

The way of functional coordination of methods of organization adaptive data collection processes and methods of spatial self-organization of mobile agents by parallel execution of the corresponding data collection processes and the process of motion control of a mobile agent using the proposed protocol of their interaction and the algorithm of parallel execution planning is proposed. The method allows to speed up the calculations in the decision block of the mobile agent by an average of 40.6%. Key words: functional coordination, adaptive data collection process, spatial self-organization, mobile agents


2021 ◽  
Author(s):  
Haoran Song ◽  
Anastasiia Varava ◽  
Oleksandr Kravchenko ◽  
Danica Kragic ◽  
Michael Yu Wang ◽  
...  

Author(s):  
Liangming Chen ◽  
Hector Garcia de Marina ◽  
Ming Cao
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2681
Author(s):  
Kedir Mamo Besher ◽  
Juan Ivan Nieto-Hipolito ◽  
Raymundo Buenrostro-Mariscal ◽  
Mohammed Zamshed Ali

With constantly increasing demand in connected society Internet of Things (IoT) network is frequently becoming congested. IoT sensor devices lose more power while transmitting data through congested IoT networks. Currently, in most scenarios, the distributed IoT devices in use have no effective spectrum based power management, and have no guarantee of a long term battery life while transmitting data through congested IoT networks. This puts user information at risk, which could lead to loss of important information in communication. In this paper, we studied the extra power consumed due to retransmission of IoT data packet and bad communication channel management in a congested IoT network. We propose a spectrum based power management solution that scans channel conditions when needed and utilizes the lowest congested channel for IoT packet routing. It also effectively measured power consumed in idle, connected, paging and synchronization status of a standard IoT device in a congested IoT network. In our proposed solution, a Freescale Freedom Development Board (FREDEVPLA) is used for managing channel related parameters. While supervising the congestion level and coordinating channel allocation at the FREDEVPLA level, our system configures MAC and Physical layer of IoT devices such that it provides the outstanding power utilization based on the operating network in connected mode compared to the basic IoT standard. A model has been set up and tested using freescale launchpads. Test data show that battery life of IoT devices using proposed spectrum based power management increases by at least 30% more than non-spectrum based power management methods embedded within IoT devices itself. Finally, we compared our results with the basic IoT standard, IEEE802.15.4. Furthermore, the proposed system saves lot of memory for IoT devices, improves overall IoT network performance, and above all, decrease the risk of losing data packets in communication. The detail analysis in this paper also opens up multiple avenues for further research in future use of channel scanning by FREDEVPLA board.


Sign in / Sign up

Export Citation Format

Share Document