Cranial Neural Crest and Development of the Head Skeleton

Author(s):  
Robert D. Knight ◽  
Thomas F. Schilling
2011 ◽  
Vol 356 (1) ◽  
pp. 197
Author(s):  
Dennis A. Ridenour ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Katherine W. Prather ◽  
Craig L. Semerad ◽  
...  

2016 ◽  
Vol 215 (5) ◽  
pp. 735-747 ◽  
Author(s):  
Andrew T. Schiffmacher ◽  
Vivien Xie ◽  
Lisa A. Taneyhill

During epithelial-to-mesenchymal transitions (EMTs), cells disassemble cadherin-based junctions to segregate from the epithelia. Chick premigratory cranial neural crest cells reduce Cadherin-6B (Cad6B) levels through several mechanisms, including proteolysis, to permit their EMT and migration. Serial processing of Cad6B by a disintegrin and metalloproteinase (ADAM) proteins and γ-secretase generates intracellular C-terminal fragments (CTF2s) that could acquire additional functions. Here we report that Cad6B CTF2 possesses a novel pro-EMT role by up-regulating EMT effector genes in vivo. After proteolysis, CTF2 remains associated with β-catenin, which stabilizes and redistributes both proteins to the cytosol and nucleus, leading to up-regulation of β-catenin, CyclinD1, Snail2, and Snail2 promoter-based GFP expression in vivo. A CTF2 β-catenin–binding mutant, however, fails to alter gene expression, indicating that CTF2 modulates β-catenin–responsive EMT effector genes. Notably, CTF2 association with the endogenous Snail2 promoter in the neural crest is β-catenin dependent. Collectively, our data reveal how Cad6B proteolysis orchestrates multiple pro-EMT regulatory inputs, including CTF2-mediated up-regulation of the Cad6B repressor Snail2, to ensure proper cranial neural crest EMT.


2001 ◽  
Vol 235 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Christine Nellemann ◽  
Maria Elena de Bellard ◽  
Meyer Barembaum ◽  
Ed Laufer ◽  
Marianne Bronner-Fraser

Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 301-310 ◽  
Author(s):  
R.M. Langille ◽  
B.K. Hall

Lamprey embryos were obtained by artificial fertilization to ascertain the contributions made by the neural crest to the head skeleton. Early-neurula-stage embryos of Petromyzon marinus were subjected to neural crest extirpation along the anterior half from one of seven zones, raised to a larval stage at which control larvae exhibit well-developed skeletons and analysed by light microscopy for any abnormalities to the cranial and visceral skeleton. The removal of premigratory neural crest at the level of the anterior prosencephalon (zone I) and at the level of somites 6 to 8 (zone VII) had no effect on skeletal development. However, the extirpation of neural crest from the intervening regions was positively correlated with deletions/reductions to the trabeculae (basicranial elements) and to the branchial arches (viscerocranial elements). Alterations to the trabeculae (16/27 cases, or 59%) occurred only after extirpation of zones II-V (corresponding to the posterior prosencephalon to midrhombencephalon) while alterations to the branchial arches (21/28 cases, or 75%) occurred only after removal of neural crest from zones III-VI (corresponding to the mesencephalon to the level of the fifth somite). Furthermore, the first three branchial arches were correlated in a majority of cases with neural crest from zone III, the next two arches with zones IV, V and VI and the last two arches with zone VI. Organs that develop within or adjacent to the area of neural crest extirpation such as the brain, notochord and lateral mesodermal derivatives were not affected. Parachordals were never altered by the operations nor were there any discernible changes to developing mucocartilage or to the prechondrogenic otic capsule. The contributions of the neural crest to the petromyzonid head skeleton described herein are compared with the roles of neural crest in the development of cranial and visceral skeletal elements in other vertebrates. The importance of these findings to the current hypothesis of the phylogeny of the vertebrate skeleton and the central role of the neural crest in vertebrate cephalization is discussed.


Sign in / Sign up

Export Citation Format

Share Document