petromyzon marinus
Recently Published Documents


TOTAL DOCUMENTS

747
(FIVE YEARS 67)

H-INDEX

47
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Prince P. Mathai ◽  
Muruleedhara N. Byappanahalli ◽  
Nicholas S. Johnson ◽  
Michael J. Sadowsky

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259587
Author(s):  
Amila A. Dissanayake ◽  
C. Michael Wagner ◽  
Muraleedharan G. Nair

Sea lamprey (Petromyzon marinus), a parasitic fish which survives on blood of other fishes, is consumed as a delicacy in many countries. Our earlier studies on sea lamprey compounds that showed potential to deter adult sea lampreys yielded several sterols, glycerides, free fatty acids, amino acids, organic acids and nitrogenous compounds. Therefore, this study was to assess the health-benefits of these compounds including additional isolates from HPLC fractions that kept aside due to lack of activity in sea lamprey deterrent assays. In vitro cyclooxygenase enzymes (COX-1 and -2) and lipid peroxidation (LPO) inhibitory assays, respectively, were used to determine antiinflammatory and antioxidant activities. Among the tested sterols, cholesteryl eicosapentaenoate and cholesteryl arachidonate exhibited IC50 values of 14.6 and 17.7 μg/mL for COX-1 and 17.3 and 20.8 μg/mL for COX-2, respectively. Cholesteryl palmitate and cholesteryl oleate showed moderate COX-1 and COX-2 enzyme inhibition at 25 μg/mL. Amino acids arginine, tyrosine, glutamic acid, tryptophan and asparagine also showed moderate COX-1 and COX-2 inhibition at the same concentration. Among the twelve new isolates from fractions that we did not investigate earlier, a novel uracil derivative petromyzonacil showed COX-1 and COX-2 inhibition at 25 μg/mL by 35 and 15%, respectively. Cholesterol esters tested at 25 μg/mL exhibited LPO inhibition between 38 and 82 percent. Amino acids cysteine, methionine, aspartic acid, threonine, tryptophan, histidine, glutamic acid, phenylalanine and tyrosine at 25 μg/mL showed LPO inhibition between 37 and 58% and petromyzonacil by 32%. These assay results indicate that consumption of sea lamprey offer health-benefits in addition to nutritional benefits.


Author(s):  
Benjamin L. Hlina ◽  
Oana Birceanu ◽  
Christopher S. Robinson ◽  
Hadi Dhiyebi ◽  
Michael P. Wilkie

2021 ◽  
Vol 12 ◽  
Author(s):  
Prince P. Mathai ◽  
Muruleedhara N. Byappanahalli ◽  
Nicholas S. Johnson ◽  
Michael J. Sadowsky

Sea lamprey (SL; Petromyzon marinus), one of the oldest living vertebrates, have a complex metamorphic life cycle. Following hatching, SL transition into a microphagous, sediment burrowing larval stage, and after 2–10+ years, the larvae undergo a dramatic metamorphosis, transforming into parasitic juveniles that feed on blood and bodily fluids of fishes; adult lamprey cease feeding, spawn, and die. Since gut microbiota are critical for the overall health of all animals, we examined the microbiota associated with SLs in each life history stage. We show that there were significant differences in the gut bacterial communities associated with the larval, parasitic juvenile, and adult life stages. The transition from larval to the parasitic juvenile stage was marked with a significant shift in bacterial community structure and reduction in alpha diversity. The most abundant SL-associated phyla were Proteobacteria, Fusobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Firmicutes, with their relative abundances varying among the stages. Moreover, while larval SL were enriched with unclassified Fusobacteriaceae, unclassified Verrucomicrobiales and Cetobacterium, members of the genera with fastidious nutritional requirements, such as Streptococcus, Haemophilus, Cutibacterium, Veillonella, and Massilia, were three to four orders of magnitude greater in juveniles than in larvae. In contrast, adult SLs were enriched with Aeromonas, Iodobacter, Shewanella, and Flavobacterium. Collectively, our findings show that bacterial communities in the SL gut are dramatically different among its life stages. Understanding how these communities change over time within and among SL life stages may shed more light on the role that these gut microbes play in host growth and fitness.


Author(s):  
Shawn M. Nowicki ◽  
Lori A. Criger ◽  
Peter J. Hrodey ◽  
W. Paul Sullivan ◽  
Fraser B. Neave ◽  
...  

2021 ◽  
Author(s):  
A. Barany ◽  
C. A. Shaughnessy ◽  
R. M. Pelis ◽  
J. Fuentes ◽  
J. M. Mancera ◽  
...  

Abstract Two ncc orthologues (termed ncca and nccb) were found in the sea lamprey genome, whereas nkcc2 was not. In a phylogenetic comparison among other vertebrate amino acids, NCC and NKCC deduced sequences, the sea lamprey NCC’s occupied basal positions within the NCC clade. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Acclimation to seawater increased nccb mRNA in the intestine and kidney. Intestinal nccb mRNA also increased during late metamorphosis. The electrophysiological approach in the Ussing chamber of intestinal tissue ex vivo showed significant differences between freshwater and seawater-acclimated juveniles. Luminal application of indapamide (NCC inhibitor) resulted in 73 and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. The luminal application of bumetanide (NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited ex vivo intestinal water absorption. Our results indicate that NCCb is likely the key passive ion cotransporter protein for ion uptake by the lamprey intestine to facilitate water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA expression during metamorphosis are likely critical to the development of whole animal salinity tolerance.


Sign in / Sign up

Export Citation Format

Share Document