Proof of Homotopy Invariance

Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Teffera M. Asfaw

LetXbe a real locally uniformly convex reflexive Banach space with locally uniformly convex dual spaceX⁎. LetT:X⊇D(T)→2X⁎be a maximal monotone operator andC:X⊇D(C)→X⁎be bounded and continuous withD(T)⊆D(C). The paper provides new existence theorems concerning solvability of inclusion problems involving operators of the typeT+Cprovided thatCis compact orTis of compact resolvents under weak boundary condition. The Nagumo degree mapping and homotopy invariance results are employed. The paper presents existence results under the weakest coercivity condition onT+C. The operatorCis neither required to be defined everywhere nor required to be pseudomonotone type. The results are applied to prove existence of solution for nonlinear variational inequality problems.


2017 ◽  
Vol 263 (11) ◽  
pp. 7162-7186 ◽  
Author(s):  
Marek Izydorek ◽  
Thomas O. Rot ◽  
Maciej Starostka ◽  
Marcin Styborski ◽  
Robert C.A.M. Vandervorst

2021 ◽  
Vol 157 (4) ◽  
pp. 649-676
Author(s):  
Daniil Rudenko

We prove the strong Suslin reciprocity law conjectured by A. Goncharov. The Suslin reciprocity law is a generalization of the Weil reciprocity law to higher Milnor $K$ -theory. The Milnor $K$ -groups can be identified with the top cohomology groups of the polylogarithmic motivic complexes; Goncharov's conjecture predicts the existence of a contracting homotopy underlying Suslin reciprocity. The main ingredient of the proof is a homotopy invariance theorem for the cohomology of the polylogarithmic motivic complexes in the ‘next to Milnor’ degree. We apply these results to the theory of scissors congruences of hyperbolic polytopes. For every triple of rational functions on a compact projective curve over $\mathbb {C}$ we construct a hyperbolic polytope (defined up to scissors congruence). The hyperbolic volume and the Dehn invariant of this polytope can be computed directly from the triple of rational functions on the curve.


2009 ◽  
Vol 14 (4) ◽  
pp. 435-461 ◽  
Author(s):  
P. D. Gupta ◽  
N. C. Majee ◽  
A. B. Roy

In this paper the dynamics of a three neuron model with self-connection and distributed delay under dynamical threshold is investigated. With the help of topological degree theory and Homotopy invariance principle existence and uniqueness of equilibrium point are established. The conditions for which the Hopf-bifurcation occurs at the equilibrium are obtained for the weak kernel of the distributed delay. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and central manifold theorem. Lastly global bifurcation aspect of such periodic solutions is studied. Some numerical simulations for justifying the theoretical analysis are also presented.


1990 ◽  
Vol 34 (2) ◽  
pp. 337-367 ◽  
Author(s):  
William M. Goldman ◽  
John J. Millson
Keyword(s):  

2005 ◽  
Vol 57 (2) ◽  
pp. 225-250 ◽  
Author(s):  
Bernhelm Booss-Bavnbek ◽  
Matthias Lesch ◽  
John Phillips

AbstractWe study the gap (= “projection norm” = “graph distance”) topology of the space of all (not necessarily bounded) self-adjoint Fredholm operators in a separable Hilbert space by the Cayley transformand direct methods. In particular, we show the surprising result that this space is connected in contrast to the bounded case. Moreover, we present a rigorous definition of spectral flow of a path of such operators (actually alternative but mutually equivalent definitions) and prove the homotopy invariance. As an example, we discuss operator curves on manifolds with boundary.


Sign in / Sign up

Export Citation Format

Share Document