An Efficient Closed Form Approach to the Evaluation of the Probability of False Alarm of the ML-CFAR Detector in a Pulse-to-Pulse Correlated Clutter

Author(s):  
Toufik Laroussi ◽  
Mourad Barkat
2018 ◽  
Vol 14 (09) ◽  
pp. 190 ◽  
Author(s):  
Shewangi Kochhar ◽  
Roopali Garg

<p>Cognitive Radio has been skillful technology to improve the spectrum sensing as it enables Cognitive Radio to find Primary User (PU) and let secondary User (SU) to utilize the spectrum holes. However detection of PU leads to longer sensing time and interference. Spectrum sensing is done in specific “time frame” and it is further divided into Sensing time and transmission time. Higher the sensing time better will be detection and lesser will be the probability of false alarm. So optimization technique is highly required to address the issue of trade-off between sensing time and throughput. This paper proposed an application of Genetic Algorithm technique for spectrum sensing in cognitive radio. Here results shows that ROC curve of GA is better than PSO in terms of normalized throughput and sensing time. The parameters that are evaluated are throughput, probability of false alarm, sensing time, cost and iteration.</p>


2018 ◽  
Vol 144 ◽  
pp. 201-215
Author(s):  
Natthanan Promsuk ◽  
Attaphongse Taparugssanagorn ◽  
Johanna Vartiainen

Author(s):  
Clint A. Kahler ◽  
J. Keith Nisbett ◽  
Clement R. Goodin

Abstract A general closed-form approach to the solution of loop equations of planar n-bar linkages is presented. Each loop of a set of canonical independent loops is decomposed to a set of vectors. Several common combinations of revolute and prismatic joints are defined. By evaluating the types of joints at each end of a vector, the magnitude and direction of the vector are determined to be known constants or unknown variables. This leads to an identification of the number of unknowns and the distribution of unknowns in the loop. This identification allows the unknowns to be found by matching the situation to one of the unique, closed-form cases for a solvable loop. A computer software application has been developed and is analyzed for efficiency.


Author(s):  
Swetha Reddy ◽  
Isaac Cushman ◽  
Danda B. Rawat ◽  
Min Song

The popularity of cloud-assisted database-driven cognitive radio network (CRN) has increased significantly due to three main reasons; reduced sensing uncertainties (caused by the use of spectrum scanning and sensing techniques), FCC mandated use of a database for storing and utilizing idle channels, and leveraging cloud computing platform to process big data generated by wideband sensing and analyzing. In database-driven CRN, secondary users periodically query the database to find idle channels for opportunistic communications where secondary users use their geolocation (with the help of Global Positioning System - GPS) to find idle channels for given location and time. Use of GPS makes the overall CRN vulnerable where malicious users falsify their geolocations through GPS spoofing to find more channels. The other main drawback of GPS is estimation error while finding location of users and idle bands. Due to this there will be probability of misdetection and false alarm which will have its effect on overall performance and efficiency of the system. In this paper, the authors present a three-stage mechanism for detecting GPS spoofing attacks using angle of arrival, received signal strength and time of arrival. They also evaluate the probability of misdetection and probability of false alarm in this system while detecting location of secondary users. The authors evaluate the performance of the proposed approach using numerical results.


2015 ◽  
Vol 48 (1) ◽  
pp. 316-321 ◽  
Author(s):  
J. Klodmann ◽  
D. Lakatos ◽  
C. Ott ◽  
A. Albu-Schäffer

Sign in / Sign up

Export Citation Format

Share Document