Digital Human Models Within Product Development Process

2011 ◽  
pp. 143-166 ◽  
Author(s):  
Caterina Rizzi
Author(s):  
Adailton da Silva ◽  
Marcus Mendes ◽  
Ingrid Winkler

The efficacy of the product development process is measured by the ability to launch a project with product and production process specifications that could guarantee that the manufacturing can produce it with the least impact. If a problem is detected late, they bring consequences beyond the high cost of the solution, if related to physical ergonomics, which will influence the well-being of operators, productivity, and quality. Virtual Reality (VR) and Digital Human Modeling (DHM) are ones of the enabling technologies of Industry 4.0 and has already been applied on a large scale in industries such as automotive, construction, and aeronautics. However, even though the huge applications, these technologies are not yet applied by these industries for the analysis of physical ergonomics during product development phases. This study aims to characterize the state of the art and technology about the application of Virtual Reality and Digital Human Modeling for the physical ergonomics analysis in the during product development phases in the industry through a systematic review of the literature and patents. In patent documents recovery, we used Derwent Innovation database. The research is based on searching the selected terms in the title, summary, and claims of the documents through a search strategy containing IPC code and keywords. In articles recovery, we searched ScienceDirect, Springer, and IEEExplore databases for scientific publications. The search resulted in 311 patents documents and 16 articles in the scientific database. This study analyzed the patents to map out the technological progress in this area, where we found in the charts and data an increasing number of publications per year and a spread application with a considerable number of new technologies presented in these recent patents. The literature review indicated that Virtual Reality technology complements the Digital Human Modeling during physical ergonomics analysis for manufacturing process already designed. The majority of research on the use of VR and DHM technologies for physical ergonomics analysis focus on the automotive industry and the ergonomic assessment of workstations and current processes. Further research is needed to investigate how Virtual Reality and Digital Human Modeling might assist in the understanding of physical ergonomics in certain tasks throughout the product development process, such as the simulation of worker posture or effort when assembling parts.


2020 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
Andreas Geiger ◽  
Elisabeth Brandenburg ◽  
Rainer Stark

Digital human models (DHMs) are virtual representations of human beings. They are used to conduct, among other things, ergonomic assessments in factory layout planning. DHM software tools are challenging in their use and thus require a high amount of training for engineers. In this paper, we present a virtual reality (VR) application that enables engineers to work with DHMs easily. Since VR systems with head-mounted displays (HMDs) are less expensive than CAVE systems, HMDs can be integrated more extensively into the product development process. Our application provides a reality-based interface and allows users to conduct an assembly task in VR and thus to manipulate the virtual scene with their real hands. These manipulations are used as input for the DHM to simulate, on that basis, human ergonomics. Therefore, we introduce a software and hardware architecture, the VATS (virtual action tracking system). This paper furthermore presents the results of a user study in which the VATS was compared to the existing WIMP (Windows, Icons, Menus and Pointer) interface. The results show that the VATS system enables users to conduct tasks in a significantly faster way.


Author(s):  
Andrea CAPRA ◽  
Ana BERGER ◽  
Daniela SZABLUK ◽  
Manuela OLIVEIRA

An accurate understanding of users' needs is essential for the development of innovative products. This article presents an exploratory method of user centered research in the context of the design process of technological products, conceived from the demands of a large information technology company. The method is oriented - but not restricted - to the initial stages of the product development process, and uses low-resolution prototypes and simulations of interactions, allowing users to imagine themselves in a future context through fictitious environments and scenarios in the ambit of ideation. The method is effective in identifying the requirements of the experience related to the product’s usage and allows rapid iteration on existing assumptions and greater exploration of design concepts that emerge throughout the investigation.


Sign in / Sign up

Export Citation Format

Share Document