assembly sequences
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 25)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
pp. 28-44
Author(s):  
D. Proskurenko ◽  
◽  
O. Tretyak ◽  
M. Demchenko ◽  
M. Filippova ◽  
...  

Modern industrial production requires the improvement of assembly processes, and thus increase the level of automated intelligent sequence planning. Therefore, researches in the field of automation of the sequence of assembly of products in industries are relevant at this time. In today's world there is a need to develop complex, accurate products. Problems are created in industries due to the reduction of the life cycle of products. There is a need to study the problem of assembly planning to achieve the goal of practical implementation and standardization of assembly plans. Creating graphs of the addition process is one of the problems. The assembly planning system can reduce human intervention in the process and reduce computational effort. The finished assembly contains many components that can be assembled using many sequences. A review of the methods from the literature showed that although these methods increase the automation level, they still cannot be applied to actual production because they do not take into account the experience and knowledge that can play a major role in planning and are of great value. Assembly planning, relationship charts, priority charts. Improving the assembly planning system to create a communication schedule and an assembly priority schedule was proposed. The advanced system will be used to generate possible assembly sequences with subassembly identification. A system has been developed to create alternative possible assembly sequences that can be used by component part / product designers in the early stages. A system capable of generating assembly sequences for simultaneous assembly of multiple parts has been proposed. Conclusions and work results can be applied used and improved for more productive product development by designers in the early stages and faster assembly of products in enterprises. The paper did not consider practical limitations (gravity) and irreversible assembly operations, such as permanent fastening, welding etc. Кey words: assembly, blocking graph, relation graph, sequence



2021 ◽  
Vol 11 (21) ◽  
pp. 10414
Author(s):  
Marcin Suszyński ◽  
Katarzyna Peta

The proposed model of the neural network describes the task of planning the assembly sequence on the basis of predicting the optimal assembly time of mechanical parts. In the proposed neural approach, the k-means clustering algorithm is used. In order to find the most effective network, 10,000 network models were made using various training methods, including the steepest descent method, the conjugate gradients method, and Broyden–Fletcher–Goldfarb–Shanno algorithm. Changes to network parameters also included the following activation functions: linear, logistic, tanh, exponential, and sine. The simulation results suggest that the neural predictor would be used as a predictor for the assembly sequence planning system. This paper discusses a new modeling scheme known as artificial neural networks, taking into account selected criteria for the evaluation of assembly sequences based on data that can be automatically downloaded from CAx systems.



2021 ◽  
Vol 41 (5) ◽  
pp. 612-625
Author(s):  
Akram Bedeoui ◽  
Riadh Ben Hadj ◽  
Moncef Hammadi ◽  
Nizar Aifaoui

Purpose During the design of a new product, the generation of assembly sequences plans (ASPs) has become one of the most important problems taken into account by researchers. In fact, a good mounting order allows the time decrease of the assembly process which leads to the reduction of production costs. In this context, researchers developed several methods to generate and optimize ASP based on various criteria. Although this paper aims to improve the quality of ASP it is necessary to increase the number of criteria which must be taken into account when generating ASPs. Design/methodology/approach In this paper, an ASP generation approach, which is based on three main algorithms, is proposed. The first one generates a set of assembly sequences based on stability criteria. The obtained results are treated by the second algorithm which is based on assembly tools (ATs) workspace criterion. An illustrative example is used to explain the different steps of this proposed approach. Moreover, a comparative study is done to highlight its advantages. Findings The proposed algorithm verifies, for each assembly sequence, the minimal required workspace of used AT and eliminates the ASPs non-respecting this criterion. Finally, the remaining assembly sequences are treated by the third algorithm to reduce the AT change during the mounting operation. Originality/value The proposed approach introduces the concept of AT workspace to simulate and select ASPs that respect this criterion. The dynamic interference process allows the eventual collision detection between tool and component and avoids it. The proposed approach reduces the AT change during the mounting operations.





2021 ◽  
Vol 12 ◽  
Author(s):  
Hongbo Xie ◽  
Qing Zhao ◽  
Mengmeng Shi ◽  
Weijun Kong ◽  
Weishan Mu ◽  
...  

With the widespread use of traditional medicine around the world, the safety and efficacy of traditional herbal patent medicine have become an increasing concern to the public. However, it is difficult to supervise the authenticity of herbal materials in mixed herbal products according to the current quality standards, especially for traditional herbal patent medicine, with a distinct variance in the dosage of herbal materials. This study utilized the shotgun metabarcoding approach to analyze the biological ingredients of Fuke Desheng Wan (FKDSW), which is an effective traditional herbal product for the treatment of dysmenorrhea. Six herbal materials were collected, and a lab-made mock FKDSW sample was produced to establish a method for the authentication assessment of biological ingredients in traditional herbal patent medicine based on shotgun metabarcoding. Furthermore, four commercial FKDSW samples were collected to verify the practicality of the shotgun metabarcoding approach. Then, a total of 52.16 Gb raw data for 174 million paired-end reads was generated using the Illumina NovaSeq sequencing platform. Meanwhile, 228, 23, and 14 operational taxonomic units (OTUs) were obtained for the ITS2, matK, and rbcL regions, respectively, after bioinformatic analysis. Moreover, no differences were evident between the assembly sequences obtained via shotgun metabarcoding and their corresponding reference sequences of the same species obtained via Sanger sequencing, except for part of the ITS2 and matK assembly sequences of Paeonia lactiflora Pall., Saussurea costus (Falc.) Lipsch. and Bupleurum chinense DC. with 1–6 different bases. The identification results showed that all six prescribed ingredients were successfully detected and that the non-authentic ingredient of Bupleuri Radix (Chaihu, Bupleurum chinense DC. or Bupleurum scorzonerifolium Willd.) was found in all the commercial samples, namely Bupleurum falcatum L. Here, 25 weed species representing 16 genera of ten families were detected. Moreover, 26 fungal genera belonging to 17 families were found in both lab-made and commercial FKDSW samples. This study demonstrated that the shotgun metabarcoding approach could overcome the biased PCR amplification and authenticate the biological ingredients of traditional herbal patent medicine with a distinct variance in the dosage of the herbal materials. Therefore, this provides an appropriate evaluation method for improving the safety and efficacy of traditional herbal patent medicine.



2021 ◽  
Author(s):  
Takuya Kiyokawa ◽  
Jun Takamatsu ◽  
Tsukasa Ogasawara


2021 ◽  
pp. 1-24
Author(s):  
Shun Takai

Abstract Concurrent engineering is a product development approach in which engineers simultaneously design products and processes to improve customer satisfaction, enhance product quality, and reduce product costs. While various design methodologies have been proposed to support concurrent engineering, development of a systematic methodology that comprehensively integrates product and process design is still an ongoing research need. Traditional DFA has been extended to concurrently design subassemblies and assembly sequences; however, the optimum assembly sequence depends on the efficiency of the assembly line and how assembly tasks are assigned to workstations without causing extensive idle time. This study extends past approaches in the concurrent design of products and processes by integrating assembly line balancing, assembly line design, and sensitivity analysis of assembly line design in addition to assembly line sequencing. In particular, this study proposes an approach to simultaneously designing products and processes by integrating 1) a liaison diagram augmented with additional information on the type of liaisons (e.g., screw fixing, snap fitting, or contacting) to find stable subassemblies and corresponding assembly tasks, 2) assembly sequencing to generate all feasible assembly sequences that satisfy requirements for stable subassembly, 3) assembly line balancing to identify all possible assignments of tasks to workstations and to find corresponding cycle times and utilization, 4) assembly line designs that include the types and number of assembly lines for each product design, and 5) sensitivity analysis to evaluate the robustness of the assembly line design.



2021 ◽  
Vol 49 (1) ◽  
pp. 12242
Author(s):  
Yongxing ZHU ◽  
Xinchen JIANG ◽  
Xiaowen HAN ◽  
Shuo HAN ◽  
Zhongyi CHEN ◽  
...  

Alternanthera philoxeroides is a notorious invasive weed worldwide, but it still lacks a genome information currently. In this study, we collected 4 groups of A. philoxeroides Illumina RNA-seq data (62.5 Gb) and performed a comprehensive de novo assembling. Totally, 421,372 unigenes were obtained with a total length of 230,842,460 bp, with 43,430 (10.31%) unigenes longer than 1000 bp. Then 119,222 (28.3%) unigenes were functional annotated and 235,885 (56.0%) were grouped into reliable lncRNAs reservoir. Besides, 534 tRNA and 234 rRNAs were identified in assembly sequences. Additionally, 131,624 microsatellites were characterized in 106,761 sequences. Then SSR primers were developed for the amplification of 40,752 microsatellites in 36,329 sequences. The miRNAs are key post-transcriptional regulators, about 86 candidate miRNA sequences were detected from A. philoxeroides assembly, and miRNA target genes prediction revealed possible functions of them in growth and development as well as stress responding processes. These results provide a vital basis for sequence-based studies of A. philoxeroides in the future, especially gene function analysis.





2021 ◽  
Vol 39 (2) ◽  
pp. 169-172
Author(s):  
Takuya Kiyokawa ◽  
Kento Tariki ◽  
Jun Takamatsu ◽  
Tsukasa Ogasawara


Sign in / Sign up

Export Citation Format

Share Document