High-Throughput Screening Assays for Dengue Antiviral Drug Development

Author(s):  
Shobana Gabriel Jabanathan ◽  
Low Zhao Xuan ◽  
Babu Ramanathan
2021 ◽  
Vol 28 ◽  
Author(s):  
Juan Cheng ◽  
Xin Li

: High-throughput screening facilitates the rapid identification of novel hit compounds; however, it remains challenging to design effective high-throughput assays, partially due to the difficulty of achieving sensitivity in the assay techniques. Among the various analytical methods that are used, fluorescence-based assays dominate owing to their high sensitivity and ease of operation. Recent advances in activity-based sensing/imaging have further expanded the availability of fluorescent probes as monitors for high-throughput screening of result outputs. In this study, we have reviewed various activity-based fluorescent probes used in high-throughput screening assays, emphasizing their structure-related working mechanisms. Moreover, we have explored the possibility of the development of additional and better probes to boost hit identification and drug development against various targets.


2011 ◽  
Vol 16 (8) ◽  
pp. 852-861 ◽  
Author(s):  
Brian J. Geiss ◽  
Hillary J. Stahla-Beek ◽  
Amanda M. Hannah ◽  
Hamid H. Gari ◽  
Brittney R. Henderson ◽  
...  

There are no effective antivirals currently available for the treatment of flavivirus infection in humans. As such, the identification and characterization of novel drug target sites are critical to developing new classes of antiviral drugs. The flavivirus NS5 N-terminal capping enzyme (CE) is vital for the formation of the viral RNA cap structure, which directs viral polyprotein translation and stabilizes the 5′ end of the viral genome. The structure of the flavivirus CE has been solved, and a detailed understanding of the CE–guanosine triphosphate (GTP) and CE–RNA cap interactions is available. Because of the essential nature of the interaction for viral replication, disrupting CE–GTP binding is an attractive approach for drug development. The authors have previously developed a robust assay for monitoring CE–GTP binding in real time. They adapted this assay for high-throughput screening and performed a pilot screen of 46 323 commercially available compounds. A number of small-molecule inhibitors capable of displacing a fluorescently labeled GTP in vitro were identified, and a second functional assay was developed to identify false positives. The results presented indicate that the flavivirus CE cap-binding site is a valuable new target site for antiviral drug discovery and should be further exploited for broad-spectrum anti-flaviviral drug development.


2015 ◽  
Vol 17 (4) ◽  
pp. 239-246 ◽  
Author(s):  
Aileen Y. Alontaga ◽  
Yifei Li ◽  
Chih-Hong Chen ◽  
Chen-Ting Ma ◽  
Siobhan Malany ◽  
...  

2021 ◽  
Vol 120 (3) ◽  
pp. 148a-149a
Author(s):  
Robyn T. Rebbeck ◽  
Kaja Rozman ◽  
Gabrielle M. Evans ◽  
Jacob Schwarz ◽  
Marzena Baran ◽  
...  

Biopolymers ◽  
2014 ◽  
Vol 102 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Franck Madoux ◽  
Claudia Tredup ◽  
Timothy P. Spicer ◽  
Louis Scampavia ◽  
Peter S. Chase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document