functional assay
Recently Published Documents


TOTAL DOCUMENTS

984
(FIVE YEARS 266)

H-INDEX

61
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
Chiao-Yi Lin ◽  
Wen-Ting Tseng ◽  
Yao-Yin Chang ◽  
Mong-Hsun Tsai ◽  
Eric Y. Chuang ◽  
...  

Background: Breast cancer is the most common malignancy and a leading cause of death among women. The majority of patients require surgery, and retrospective studies have revealed an association between anaesthetic techniques during surgery and clinical outcomes. Local anaesthetics (LAs) influence carcinogenesis by interacting with non-coding RNAs (ncRNAs). However, the detailed mechanisms underlying the association between LAs and ncRNAs remain unclear.Methods: In this study, the effects of two commonly used LAs, lidocaine and bupivacaine, on the malignancy of MCF-7 breast cancer cells were investigated. The expression profiles of the microRNAs (miRNAs) that responded to treatment with LAs were determined through next-generation sequencing.Results: Data from the functional assay revealed that the LAs suppressed the proliferation of MCF-7 cells. The result of next-generation sequencing revealed that 131 miRNAs were upregulated, following treatment with the LAs. Validation using polymerase chain reaction (PCR) identified miR-187-5p as a potential biomarker, and it was selected for further analyses. Prediction with bioinformatics tools and luciferase reporter assays revealed that MYB is a direct target gene of miR-187-5p. Based on the hypothesis that lncRNAs acts as miRNA sponges, the target lncRNA, DANCR, of miR-187-5p was predicted using DIANA-LncBase v2 and validated using luciferase reporter assays. In addition, the reciprocal suppressive effect between DANCR and miR-187-5p was determined.Conclusions: This study suggests that one of the anti-tumour mechanisms of lidocaine and bupivacaine is mediated through the DANCR-miR-187-5p-MYB axis. This may provide a novel molecular mechanism of tumour suppression in breast cancer.


2022 ◽  
Vol 15 ◽  
Author(s):  
Pauline Beckers ◽  
Olaya Lara ◽  
Ines Belo do Nascimento ◽  
Nathalie Desmet ◽  
Ann Massie ◽  
...  

Disruption of the glutamatergic homeostasis is commonly observed in neurological diseases and has been frequently correlated with the altered expression and/or function of astrocytic high-affinity glutamate transporters. There is, however, a growing interest for the role of the cystine-glutamate exchanger system xc– in controlling glutamate transmission. This exchanger is predominantly expressed in glial cells, especially in microglia and astrocytes, and its dysregulation has been documented in diverse neurological conditions. While most studies have focused on measuring the expression of its specific subunit xCT by RT-qPCR or by Western blotting, the activity of this exchanger in tissue samples remains poorly examined. Indeed, the reported use of sulfur- and carbon-radiolabeled cystine in uptake assays shows several drawbacks related to its short radioactive half-life and its relatively high cost. We here report on the elaborate validation of a method using tritiated glutamate as a substrate for the reversed transport mediated by system xc–. The uptake assay was validated in primary cultured astrocytes, in transfected cells as well as in crude synaptosomes obtained from fresh nervous tissue samples. Working in buffers containing defined concentrations of Na+, allowed us to differentiate the glutamate uptake supported by system xc– or by high-affinity glutamate transporters, as confirmed by using selective pharmacological inhibitors. The specificity was further demonstrated in primary astrocyte cultures from transgenic mice lacking xCT or in cell lines where xCT expression was genetically induced or reduced. As such, this assay appears to be a robust and cost-efficient solution to investigate the activity of this exchanger in physiological and pathological conditions. It also provides a reliable tool for the screening and characterization of new system xc– inhibitors which have been frequently cited as valuable drugs for nervous disorders and cancer.


Author(s):  
Arnold Awuah ◽  
Ava Zamani ◽  
Fariba Tahami ◽  
Mark Davis ◽  
Louis Grandjean ◽  
...  

Abstract Understanding the T cell response to SARS-CoV-2 is key in patients who lack antibody production. We demonstrate the applicability of a functional assay to measure the T cell response in a cohort of patients with immunodeficiency.


2022 ◽  
Vol 12 ◽  
Author(s):  
Aida Kozlic ◽  
Nikola Winter ◽  
Theresia Telser ◽  
Jakob Reimann ◽  
Katrin Rose ◽  
...  

The N-degron pathway is a branch of the ubiquitin-proteasome system where amino-terminal residues serve as degradation signals. In a synthetic biology approach, we expressed ubiquitin ligase PRT6 and ubiquitin conjugating enzyme 2 (AtUBC2) from Arabidopsis thaliana in a Saccharomyces cerevisiae strain with mutation in its endogenous N-degron pathway. The two enzymes re-constitute part of the plant N-degron pathway and were probed by monitoring the stability of co-expressed GFP-linked plant proteins starting with Arginine N-degrons. The novel assay allows for straightforward analysis, whereas in vitro interaction assays often do not allow detection of the weak binding of N-degron recognizing ubiquitin ligases to their substrates, and in planta testing is usually complex and time-consuming.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Nitwara Wikan ◽  
Phateep Hankittichai ◽  
Phatarawat Thaklaewphan ◽  
Saranyapin Potikanond ◽  
Wutigri Nimlamool

Psoriasis is a complex inflammatory disease characterized by hyperproliferative keratinocyte caused by active PI3K/AKT signaling. TNF-α concentrated in the psoriatic lesions stimulates AKT activation. We previously discovered that oxyresveratrol inhibited inflammation via suppressing AKT phosphorylation, therefore oxyresveratrol may possess a conserved property to block AKT activation and proliferation in keratinocyte in response to TNF-α. Our current study proved that oxyresveratrol exhibited potent anti-proliferative effects against TNF-α. These effects are explained by the findings that oxyresveratrol could potentially inhibit TNF-α-stimulated AKT and GSK3-β activation in a dose-dependent manner, and its inhibitory pattern was comparable to that of a specific PI3K inhibitor. Results from immunofluorescence supported that oxyresveratrol effectively inhibited AKT and GSK3-β activation in individual cells upon TNF-α stimulation. Furthermore, functional assay confirmed that oxyresveratrol repressed the expansion of the HaCaT colony over 3 days, and this was caused by the ability of oxyresveratrol to induce cell cycle arrest at S and G2/M phases and the reduction in the expression of a proliferative marker (Ki-67) and a survival marker (MCL-1). Given the importance of TNF-α and the PI3K/AKT pathway in the psoriatic phenotype, we anticipate that oxyresveratrol, which targets the TNF-α-stimulated PI3K/AKT pathway, would represent a promising psoriasis therapy in the near future.


2021 ◽  
Vol 23 (1) ◽  
pp. 296
Author(s):  
Mayara J. Prado ◽  
Shripriya Singh ◽  
Rodrigo Ligabue-Braun ◽  
Bruna V. Meneghetti ◽  
Thaiane Rispoli ◽  
...  

Deficiency of 21-hydroxylase enzyme (CYP21A2) represents 90% of cases in congenital adrenal hyperplasia (CAH), an autosomal recessive disease caused by defects in cortisol biosynthesis. Computational prediction and functional studies are often the only way to classify variants to understand the links to disease-causing effects. Here we investigated the pathogenicity of uncharacterized variants in the CYP21A2 gene reported in Brazilian and Portuguese populations. Physicochemical alterations, residue conservation, and effect on protein structure were accessed by computational analysis. The enzymatic performance was obtained by functional assay with the wild-type and mutant CYP21A2 proteins expressed in HEK293 cells. Computational analysis showed that p.W202R, p.E352V, and p.R484L have severely impaired the protein structure, while p.P35L, p.L199P, and p.P433L have moderate effects. The p.W202R, p.E352V, p.P433L, and p.R484L variants showed residual 21OH activity consistent with the simple virilizing phenotype. The p.P35L and p.L199P variants showed partial 21OH efficiency associated with the non-classical phenotype. Additionally, p.W202R, p.E352V, and p.R484L also modified the protein expression level. We have determined how the selected CYP21A2 gene mutations affect the 21OH activity through structural and activity alteration contributing to the future diagnosis and management of CYP21A2 deficiency.


2021 ◽  
Author(s):  
Connie Jiang ◽  
Ebony Richardson ◽  
Jessica Farr ◽  
Adam P Hill ◽  
Rizwan Ullah ◽  
...  

Purpose: Modern sequencing technologies have revolutionised our detection of gene variants. In most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUS). The aim of this study is to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in the KCNH2 gene. Methods: The assay was designed according to recommendations of the ClinGen sequence variant interpretation framework. Thirty-one control variants of known clinical significance (17 pathogenic/likely pathogenic, 14 benign/likely benign) were heterozygously expressed in Flp-In HEK293 cells. Variants were analysed for effects on current density and channel gating. A panel of 44 VUS was then assessed for reclassification. Results: All 17 pathogenic variant controls had reduced current density and 13/14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying moderate or supporting evidence strength for variant classification. Inclusion of KCNH2 functional assay evidence enabled us to reclassify 6 out of 44 VUS as likely pathogenic. Conclusion: The high-throughput patch clamp assay can provide moderate strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value proposition for developing automated patch clamp assays for other ion channel genes.


2021 ◽  
Author(s):  
Abhijit Rath ◽  
Alexander A Radecki ◽  
Kaussar Rahman ◽  
Rachel B Gilmore ◽  
Jonathan R Hudson ◽  
...  

PURPOSE: Functional assays provide important evidence for classifying the disease significance of germline variants in the DNA mismatch repair genes. We sought to develop a cell-based approach for testing the function of variants of uncertain significance (VUS) in the MLH1 gene. METHODS: Using CRISPR gene editing, we knocked-in MLH1 VUS into the endogenous MLH1 loci in human embryonic stem cells. We examined their impact at the RNA and protein level, including their ability to maintain stability of microsatellite sequences and instigate a DNA damage response. We calibrated these assays by testing well-established pathogenic and benign control variants. RESULTS: Five VUS resulted in functionally abnormal protein, 15 VUS resulted in functionally normal protein, and one VUS showed mixed results. Furthermore, we converted the functional outputs into a single odds in favor of pathogenicity score for each VUS. CONCLUSION: Our CRISPR-based functional assay successfully models phenotypes observed in patients in a cellular context. Using this approach, we generated evidence for or against pathogenicity for utilization by variant classification expert panels. Ultimately, this information will assist in proper diagnosis and disease management for suspected Lynch syndrome patients.


Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 536-544
Author(s):  
Allyson M. Pishko ◽  
Adam Cuker

Abstract Clinicians generally counsel patients with a history of heparin-induced thrombocytopenia (HIT) to avoid heparin products lifelong. Although there are now many alternative (nonheparin) anticoagulants available, heparin avoidance remains challenging for cardiac surgery. Heparin is often preferred in the cardiac surgery setting based on the vast experience with the agent, ease of monitoring, and reversibility. To “clear” a patient with a history of HIT for cardiac surgery, hematologists must first confirm the diagnosis of HIT, which can be challenging due to the ubiquity of heparin exposure and frequency of thrombocytopenia in patients in the cardiac intensive care unit. Next, the “phase of HIT” (acute HIT, subacute HIT A/B, or remote HIT) should be established based on platelet count, immunoassay for antibodies to platelet factor 4/heparin complexes, and a functional assay (eg, serotonin release assay). As long as the HIT functional assay remains positive (acute HIT or subacute HIT A), cardiac surgery should be delayed if possible. If surgery cannot be delayed, an alternative anticoagulant (preferably bivalirudin) may be used. Alternatively, heparin may be used with either preoperative/intraoperative plasma exchange or together with a potent antiplatelet agent. The optimal strategy among these options is not known, and the choice depends on institutional experience and availability of alternative anticoagulants. In the later phases of HIT (subacute HIT B or remote HIT), brief intraoperative exposure to heparin followed by an alternative anticoagulant as needed in the postoperative setting is recommended.


Author(s):  
Mayara Jorgens Prado ◽  
Shripryia Singh ◽  
Rodrigo Ligabue-Braun ◽  
Bruna Meneghetti ◽  
Thaiane Rispoli ◽  
...  

Deficiency of Cytochrome P450 Steroid 21-hydroxylase (CYP21A2) represents 90% of cases in congenital adrenal hyperplasia (CAH), an autosomal recessive disease caused by defects in cortisol biosynthesis. Computational prediction along with functional studies are often the only way to classify variants to understand the links to disease-causing effects. Here we investigated the pathogenicity of uncharacterized variants in the CYP21A2 gene reported in the Brazilian and Portuguese populations. Physicochemical alterations, residue conservation, and effect on protein structure were accessed by computational analysis. The enzymatic performance was obtained by functional assay with the wild-type and mutant CYP21A2 proteins expressed in HEK293 cells. Computational analysis showed that p.W202R, p.E352V, and p.R484L have severely impaired the protein structure, while p.P35L, p.L199P, and p.P433L have moderate effects. The p.W202R, p.E352V, p.P433L, and p.R484L variants showed residual 21OH activity consistent with the simple virilizing phenotype. The p.P35L and p.L199P variants showed partial 21OH efficiency associated with the non-classical phenotype. Additionally, p.W202R, p.E352V and p.R484L also modified the protein expression level. We have determined how the selected CYP21A2 gene mutations affect the 21OH activity through structural and activity alteration contributing to the future diagnosis and management of 21OH deficiency.


Sign in / Sign up

Export Citation Format

Share Document