Analyses of Inositol Phosphates and by Strong Anion Exchange (SAX)-HPLC

Author(s):  
Debabrata Laha ◽  
Marília Kamleitner ◽  
Philipp Johnen ◽  
Gabriel Schaaf
2004 ◽  
Vol 9 (4) ◽  
pp. 343-353 ◽  
Author(s):  
Elfrida R. Benjamin ◽  
Sarah L. Haftl ◽  
Dimitris N. Xanthos ◽  
Gregg Crumley ◽  
Mohamed Hachicha ◽  
...  

Inositol phosphates (IPs), such as 1,4,5-inositol-trisphosphate (IP3), comprise a ubiquitous intracellular signaling cascade initiated in response to G protein-coupled receptor-mediated activation of phospholipase C. Classical methods for measuring intracellular accumulation of these molecules include time-consuming high-performance liquid chromatography (HPLC) separation or large-volume, gravity-fed anion-exchange column chromatography. More recent approaches, such as radio-receptor and AlphaScreen™ assays, offer higher throughput. However, these techniques rely on measurement of IP3 itself, rather than its accumulation with other downstream IPs, and often suffer from poor signal-to-noise ratios due to the transient nature of IP3. The authors have developed a miniaturized, anion-exchange chromatography method for measuring inositol phosphate accumulation in cells that takes advantage of signal amplification achieved through measuring IP3 and downstream IPs. This assay uses centrifugation of 96-well-formatted anion-exchange mini-columns for the isolation of radiolabeled inositol phosphates from cell extracts, followed by low-background dry-scintillation counting. This improved assay method measures receptor-mediated IP accumulation with signal-to-noise and pharmacological values comparable to the classical large-volume, column-based methods. Assay validation data for recombinant muscarinic receptor 1, galanin receptor 2, and rat astrocyte metabotropic glutamate receptor 5 are presented. This miniaturized protocol reduces reagent usage and assay time as compared to large-column methods and is compatible with standard 96-well scintillation counters.


2017 ◽  
Author(s):  
Gemma Hardman ◽  
Simon Perkins ◽  
Zheng Ruan ◽  
Natarajan Kannan ◽  
Philip Brownridge ◽  
...  

Protein phosphorylation is a ubiquitous post-translational modification (PTM) that regulates all aspects of life. To date, investigation of human cell signalling has focussed on canonical phosphorylation of serine (Ser), threonine (Thr) and tyrosine (Tyr) residues. However, mounting evidence suggests that phosphorylation of histidine also plays a central role in regulating cell biology. Phosphoproteomics workflows rely on acidic conditions for phosphopeptide enrichment, which are incompatible with the analysis of acid-labile phosphorylation such as histidine. Consequently, the extent of non-canonical phosphorylation is likely to be under-estimated. We report an Unbiased Phosphopeptide enrichment strategy based on Strong Anion Exchange (SAX) chromatography (UPAX), which permits enrichment of acid-labile phosphopeptides for characterisation by mass spectrometry. Using this approach, we identify extensive and positional phosphorylation patterns on histidine, arginine, lysine, aspartate and glutamate in human cell extracts, including 310 phosphohistidine and >1000 phospholysine sites of protein modification. Remarkably, the extent of phosphorylation on individual non-canonical residues vastly exceeds that of basal phosphotyrosine. Our study reveals the previously unappreciated diversity of protein phosphorylation in human cells, and opens up avenues for exploring roles of acid-labile phosphorylation in any proteome using mass spectrometry.


2005 ◽  
pp. 95-102 ◽  
Author(s):  
Biljana Abramovic ◽  
Sandra Jaksic ◽  
Zoran Masic

The efficiencies of different clean-up procedures for crude corn extract from corn samples naturally contaminated by fumonisins B1 and B2 were compared. These procedures precede liquid chromatography determination with fluorescence detection. The efficiencies of immunoaffinity columns (IMA) strong anion exchange columns (SAX), as well as columns with reversed-phase C18 (RP C18) were investigated. No significant differences in the obtained results were found, regardless of the crude extract clea-nup procedure. However, the use of IMA columns for clean-up provided better chromatographic resolution, with the clean-up procedure being the simplest and the fastest. Also, because of the possibility of IMA column regeneration, it is possible to prepare ten samples on one column, so all in all, the lower price of SAX and RP C18 columns is of no great significance.


Sign in / Sign up

Export Citation Format

Share Document