exchange material
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 8 (4) ◽  
pp. 20218409
Author(s):  
D. A. Chuprynina ◽  
I. A. Lupanova ◽  
V. V. Konshin ◽  
D. N. Konshina

This manuscript describes the preparation of a simple effective ion-exchange material based on silica gel, on the surface of which methylimidazolium bromide is fixed using a click reaction. The resulting material was used as a stationary phase for the separation and determination of Cl–, NO2–, NO3–, I–, and SO42– using ion exchange chromatography. The separation efficiency and retention factors for the selected anions were studied in the pH range 3.5–6.5. The proposed material was used for the determination of Cl–, SO42– in water and can be suggested for successful use in real water samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianzhi Cao ◽  
Nicolas Flament ◽  
Ömer F. Bodur ◽  
R. Dietmar Müller

AbstractSeismic studies have revealed two Large Low-Shear Velocity Provinces (LLSVPs) in the lowermost mantle. Whether these structures remain stable over time or evolve through supercontinent cycles is debated. Here we analyze a recently published mantle flow model constrained by a synthetic plate motion model extending back to one billion years ago, to investigate how the mantle evolves in response to changing plate configurations. Our model predicts that sinking slabs segment the basal thermochemical structure below an assembling supercontinent, and that this structure eventually becomes unified due to slab push from circum-supercontinental subduction. In contrast, the basal thermochemical structure below the superocean is generally coherent due to the persistence of a superocean in our imposed plate reconstruction. The two antipodal basal thermochemical structures exchange material several times when part of one of the structures is carved out and merged with the other one, similarly to “exotic” tectonic terranes. Plumes mostly rise from thick basal thermochemical structures and in some instances migrate from the edges towards the interior of basal thermochemical structures due to slab push. Our results suggest that the topography of basal structures and distribution of plumes change over time due to the changing subduction network over supercontinent cycles.


2021 ◽  
Vol 37 (4) ◽  
pp. 997-1001
Author(s):  
Esmat Laiq ◽  
Syed Ashfaq Nabi

Synthesis of a composite ion exchange material Tin (IV) tungstoselenate - 1, 10 phenanthroline has been achieved by mixing differentvolume ratios of the organic counterpart with the inorganic ion exchangertin (IV) tungstoselenate. Final sample, having 0.88mmoles of 1, 10 phenanthroline per gram of inorganic ion exchanger, was chosen for characterization, including ion exchange capacity, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The ion exchange capacity of Li+, Na+, Ca2+, Sr2+ metals was determined by using the synthesized material. The adsorption behavior of Al3+,Co2+,Ni2+,Cu2+,Cd2+,Pb2+ in various solvent systems have been studied. Based on distribution Coefficient (Kd) values, few analytically necessary separations of metal ions from the synthetic mixture have been achieved on the column of the composite ion exchanger.


2021 ◽  
Author(s):  
Zaixing Huang ◽  
Fang-Jing Liu ◽  
Mingcheng Tang ◽  
Yangyan Gao ◽  
David Bagley ◽  
...  

Abstract Although becoming less attractive as an energy source, coal has significant potential for other, more sustainable uses including water treatment. In this study, we present a simple approach to treat water that was produced during oil production and contained a total dissolved solids (TDS) content of over 150 g/L using Powder River Basin (PRB) coal. PRB coal used as packing material in a flow-through column effectively removed 60-80% of the cations and anions simultaneously. Additionally, 71-92% of the total organic carbon in the produced water was removed as was all of the total suspended solids. The removal mechanisms of both cations and anions were investigated. Cations were removed by ion exchange with protons from oxygen-containing functional groups such as carboxylic and phenolic hydroxyl groups. Anions, mainly Cl-1, appeared to be removed through either the formation of resonance structures as a result of delocalization of electrons within coal molecules or through ion-π interactions. We propose that coal is a “pseudo-amphoteric” exchange material that can remove cations and anions simultaneously by exchanging ions with both ionized and non-ionized acids that are ubiquitous in coal structure or resonance effect.


Author(s):  
Imann Mosleh ◽  
Ahmad R. Khosropour ◽  
Hazim Aljewari ◽  
Christina Carbrello ◽  
Xianghong Qian ◽  
...  

2021 ◽  
Vol MA2021-01 (57) ◽  
pp. 1531-1531
Author(s):  
Poonam Kumari ◽  
Disha Goel ◽  
Sunita Mishra ◽  
Manoj Kumar Nayak

Author(s):  
María Martha Barroso Quiroga ◽  
Mònica Iglesias Juncà ◽  
Nora Andrea Merino

Abstract Layered double hydroxides (LDH) are anionic clays, mainly used as adsorbents, ion exchange material, and catalysts. Generally, they present high specific surface areas, alkaline character, high metallic dispersion, and high thermal stability. If they contain a transitional element in their structure, the solid may present redox properties. LDH were synthesized with the following combinations: MgAl, MgFe, and ZnMgFe, aiming to determine the effect of cationic nature in the structure and the functionality of the synthesized clay as adsorbents in polluted aqueous effluents. The textural properties were determined by nitrogen adsorption isotherms. Crystalline structure was studied by XRD and the presence of the anions of the interlayer was determined by FTIR spectroscopy. The studies of removal of As(III) and As(V) from aqueous solutions, using the LDH, show that after 24 h the solids reach a high removal efficiency. ZnMgFe solid removed both species of arsenic with values of 95 and 98% for As(II) and As(V), respectively. The MgFe solid showed some selectivity to the uptake of As(V), while the MgAl only removed As(V). This selective behaviour can be beneficial in studies of arsenic speciation.


2021 ◽  
Vol 22 (8) ◽  
pp. 4075
Author(s):  
Hong Chen ◽  
Jiangli Dong ◽  
Tao Wang

Plants can be considered an open system. Throughout their life cycle, plants need to exchange material, energy and information with the outside world. To improve their survival and complete their life cycle, plants have developed sophisticated mechanisms to maintain cellular homeostasis during development and in response to environmental changes. Autophagy is an evolutionarily conserved self-degradative process that occurs ubiquitously in all eukaryotic cells and plays many physiological roles in maintaining cellular homeostasis. In recent years, an increasing number of studies have shown that autophagy can be induced not only by starvation but also as a cellular response to various abiotic stresses, including oxidative, salt, drought, cold and heat stresses. This review focuses mainly on the role of autophagy in plant abiotic stress management.


Sign in / Sign up

Export Citation Format

Share Document