In Situ Multiplexing to Identify, Quantify, and Phenotype the HIV-1/SIV Reservoir Within Lymphoid Tissue

Author(s):  
Kathleen Busman-Sahay ◽  
Michael D. Nekorchuk ◽  
Carly Elizabeth Starke ◽  
Chi Ngai Chan ◽  
Jacob D. Estes
Keyword(s):  
The Lancet ◽  
1999 ◽  
Vol 353 (9148) ◽  
pp. 211-212 ◽  
Author(s):  
Bruce K Patterson ◽  
Mary Ann Czerniewski ◽  
John Pottage ◽  
Michelle Agnoli ◽  
Harold Kessler ◽  
...  

Cell Reports ◽  
2015 ◽  
Vol 12 (10) ◽  
pp. 1555-1563 ◽  
Author(s):  
Nicole L.K. Galloway ◽  
Gilad Doitsh ◽  
Kathryn M. Monroe ◽  
Zhiyuan Yang ◽  
Isa Muñoz-Arias ◽  
...  

Author(s):  
Andrew H. Talal ◽  
Simon Monard ◽  
Mika Vesanen ◽  
Zhaoyao Zheng ◽  
Arlene Hurley ◽  
...  

2021 ◽  
Author(s):  
Marta Calvet-Mirabent ◽  
Daniel T. Claiborne ◽  
Maud Deruaz ◽  
Serah Tanno ◽  
Carla Serra ◽  
...  

Effective function of CD8+ T cells and enhanced innate activation of dendritic cells (DC) in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of TBK1-primed DC inducing protective CD8+ T cell responses in lymphoid tissue and peripheral blood and their association with reduced HIV-1 disease progression in vivo in the humanized bone marrow, liver and thymus (hBLT) mouse model. A higher proportion of hBLT-mice vaccinated with TBK1-primed DC exhibited less severe CD4+ T cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to secondary lymphoid organs and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, TBK1-primed DC might be an useful tool for subsequent vaccine studies.


Retrovirology ◽  
2010 ◽  
Vol 7 (1) ◽  
Author(s):  
Michael Schindler ◽  
Devi Rajan ◽  
Carina Banning ◽  
Peter Wimmer ◽  
Herwig Koppensteiner ◽  
...  

1992 ◽  
Vol 1 (1) ◽  
pp. 98-102
Author(s):  
Gerard J. Nuovo ◽  
Michele Margiotta ◽  
Phyllis MacConnell ◽  
Joanne Becker
Keyword(s):  

2007 ◽  
Vol 81 (12) ◽  
pp. 6563-6572 ◽  
Author(s):  
Raghavan Chinnadurai ◽  
Devi Rajan ◽  
Jan Münch ◽  
Frank Kirchhoff

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing ∼10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.


2018 ◽  
Vol 14 (8) ◽  
pp. e1007269 ◽  
Author(s):  
Dorota Kmiec ◽  
Bengisu Akbil ◽  
Swetha Ananth ◽  
Dominik Hotter ◽  
Konstantin M. J. Sparrer ◽  
...  

2002 ◽  
Vol 76 (23) ◽  
pp. 12087-12096 ◽  
Author(s):  
Jeffrey D. Dvorin ◽  
Peter Bell ◽  
Gerd G. Maul ◽  
Masahiro Yamashita ◽  
Michael Emerman ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells productively because the nuclear import of viral nucleic acids occurs in the absence of cell division. A number of viral factors that are present in HIV-1 preintegration complexes (PICs) have been assigned functions in nuclear import, including an essential valine at position 165 in integrase (IN-V165) and the central polypurine tract (cPPT). In this article, we report a comparison of the replication and infection characteristics of viruses with disruptions in the cPPT and IN-V165. We found that viruses with cPPT mutations still replicated productively in both dividing and nondividing cells, while viruses with a mutation at IN-V165 did not. Direct observation of the subcellular localization of HIV-1 cDNAs by fluorescence in situ hybridization revealed that cDNAs synthesized by both mutant viruses were readily detected in the nucleus. Thus, neither the cPPT nor the valine residue at position 165 of integrase is essential for the nuclear import of HIV-1 PICs.


Sign in / Sign up

Export Citation Format

Share Document