An Artificial Intelligence Path Planning System for Multiple Tasks Inspection on Co-Ordinate Measuring Machine

Author(s):  
C. G. Lu ◽  
P. Myler ◽  
M. H. Wu
Author(s):  
DongSeop Lee ◽  
Jacques Periaux ◽  
Luis Felipe Gonzalez

This paper presents the application of advanced optimization techniques to Unmanned Aerial Systems (UAS) Mission Path Planning System (MPPS) using Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and a Hybrid Game strategy are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The resulting trajectories on a three-dimension terrain are collision-free and are represented by using Be´zier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a Hybrid-Game strategy to a MOEA and for a MPPS.


Author(s):  
V. A. Albuquerque ◽  
F. W. Liou ◽  
S. Agarwal ◽  
O. R. Mitchell

Abstract In many industrial applications, such as product prototype development, automation of inspection process can greatly improve product quality and product development cycle, time. This paper discusses a development of a vision aided automatic inspection using Coordinate Measuring Machine (CMM). We seek to integrate the flexibility afforded by computer vision systems with the precision of numerically controlled coordinate measuring machines to achieve a fully automatic and reliable inspection of the industrial parts. The 3-D design information and part specification from computer-aided design file is used for inspection point placement and CMM path planning. The proposed system demonstrates that optimal collision-free inspection paths can be efficiently generated for geometrically complex parts consisting of multiply intersecting features. This is made possible by using iterative subdivision of surfaces for point placement coupled with, efficient 3-D collision avoidance and path planning. The paper discusses different algorithms used, and presents experimental results.


Author(s):  
Gayathri Rajendran ◽  
Uma Vijayasundaram

Robotics has become a rapidly emerging branch of science, addressing the needs of humankind by way of advanced technique, like artificial intelligence (AI). This chapter gives detailed explanation about the background knowledge required in implementing the software robots. This chapter has an in-depth explanation about different types of software robots with respect to different applications. This chapter would also highlight some of the important contributions made in this field. Path planning algorithms are required for performing robot navigation efficiently. This chapter discusses several robot path planning algorithms which help in utilizing the domain knowledge, avoiding the possible obstacles, and successfully accomplishing the tasks in lesser computational time. This chapter would also provide a case study on robot navigation data and explain the significant of machine learning algorithms in decision making. This chapter would also discuss some of the potential simulators used in implementing software robots.


2021 ◽  
pp. 596-605
Author(s):  
Youge Su ◽  
Wanghui Bu ◽  
Jing Chen ◽  
Sihang Li ◽  
Mingzhi Liu

Sign in / Sign up

Export Citation Format

Share Document