Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2032
Author(s):  
Yanting Luo ◽  
Yongmin Yang ◽  
Xisen Wen ◽  
Ming Cheng

Uncertainty commonly exists in the wireless power transfer (WPT) systems for moving objects. To enhance the robustness of the WPT system to uncertain parameter variations, a modified WPT system structure and an interval-based uncertain optimization method are proposed in this paper. The modified WPT system, which includes two Q-type impedance matching networks, can switch between two different operating modes. The interval-based uncertain optimization method is used to improve the robustness of the modified WPT system: First, two interval-based objective functions (mean function and variance function) are defined to evaluate the average performance and the robustness of the system. A double-objective uncertain optimization model for the modified WPT system is built. Second, a bi-level nested optimization algorithm is proposed to find the Pareto optimal solutions of the proposed optimization model. The Pareto fronts are provided to illustrate the tradeoff between the two objectives, and the robust solutions are obtained. Experiments were carried out to verify the theoretical method. The results demonstrated that using the proposed method, the modified WPT system can achieve good robustness when the coupling coefficient, the operating frequency, the load resistance or the load reactance varies over a wide range.


Author(s):  
Tai-shan Lou ◽  
Xiao-qian Wang ◽  
Dong-xuan Han ◽  
Hong-ye Ban ◽  
Xiao-lei Wang ◽  
...  

2018 ◽  
Vol 2 (1) ◽  
pp. 59-63
Author(s):  
Krzysztof Oprzędkiewicz

In the paper a construction of a control system for 2nd order, uncertain-parameter plant is discussed. The considered model of the plant is described by state space equation or by equivalent transfer function and it describes a huge class of real control plants, for example – electric drives or oriented PV systems. As a controller the digital proportional (P) controller was employed. The control system is going to be implemented at the microcontroller platform. Results are by the example depicted.


Open Physics ◽  
2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Chun-Guo Jing ◽  
Ping He ◽  
Tao Fan ◽  
Yangmin Li ◽  
Changzhong Chen ◽  
...  

AbstractThis paper focuses on the single state feedback stabilization problem of unified chaotic system and circuit implementation. Some stabilization conditions will be derived via the single state feedback control scheme. The robust performance of controlled unified chaotic systems with uncertain parameter will be investigated based on maximum and minimum analysis of uncertain parameter, the robust controller which only requires information of a state of the system is proposed and the controller is linear. Both the unified chaotic system and the designed controller are synthesized and implemented by an analog electronic circuit which is simpler because only three variable resistors are required to be adjusted. The numerical simulation and control in MATLAB/Simulink is then provided to show the effectiveness and feasibility of the proposed method which is robust against some uncertainties. The results presented in this paper improve and generalize the corresponding results of recent works.


Sign in / Sign up

Export Citation Format

Share Document